Propositional Logic for Epistemic Logic

July 28, 2014

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Propositional Logic

A proposition ((indicative) sentence, (closed) wff), in the context of propositional logic, is the kind of linguistic entity that can have a truth value.

Propositional Logic

A proposition ((indicative) sentence, (closed) wff), in the context of propositional logic, is the kind of linguistic entity that can have a truth value.

Propositional logic studies the logical properties of complex propositions (entailment, logical truth, consistency etc.) based on their propositional parts.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Language of PL

Symbols:

- Propositional letters: p, q, r, s...
- Connectives:
 - Unary: ¬
 - Binary: $\land, \lor, \Rightarrow, \Leftrightarrow$
- Punctuation: (,)

The Language of PL

Symbols:

- Propositional letters: p, q, r, s...
- Connectives:
 - Unary: ¬
 - Binary: $\land, \lor, \Rightarrow, \Leftrightarrow$
- Punctuation: (,)

Well-formed formulas (wff):

- 1) Every propositional letter is a wff.
- 2) If ϕ is a wff, then $(\neg \phi)$ is a wff.
- 3) If ϕ and ψ are wffs, so are $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \Rightarrow \psi)$ and $(\phi \Leftrightarrow \psi)$.
- 4) Only items received by 1-3 are wffs.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

A valuation v is a function from the set of propositional letters to $\{T, F\}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

A valuation v is a function from the set of propositional letters to $\{T, F\}$. We can view v as a *model*, an *interpretation* or as representing a *state of affairs*.

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

A valuation v is a function from the set of propositional letters to $\{T, F\}$. We can view v as a *model*, an *interpretation* or as representing a *state of affairs*.

We extend v to a *satisfaction relation* on all wff's inductively, in the following way:

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

A valuation v is a function from the set of propositional letters to $\{T, F\}$. We can view v as a *model*, an *interpretation* or as representing a *state of affairs*.

We extend v to a *satisfaction relation* on all wff's inductively, in the following way:

For a propositional letter p, $\models_v p$ iff v(p) = T

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

A valuation v is a function from the set of propositional letters to $\{T, F\}$. We can view v as a *model*, an *interpretation* or as representing a *state of affairs*.

We extend v to a *satisfaction relation* on all wff's inductively, in the following way:

For a propositional letter p, $\models_v p$ iff v(p) = T $\models_v \neg \phi$ iff $\not\models_v \phi$

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

A valuation v is a function from the set of propositional letters to $\{T, F\}$. We can view v as a *model*, an *interpretation* or as representing a *state of affairs*.

We extend v to a *satisfaction relation* on all wff's inductively, in the following way:

For a propositional letter p, $\models_v p$ iff v(p) = T $\models_v \neg \phi$ iff $\not\models_v \phi$ $\models_v \phi \land \psi$ iff $\models_v \phi$ and $\models_v \psi$

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

A valuation v is a function from the set of propositional letters to $\{T, F\}$. We can view v as a *model*, an *interpretation* or as representing a *state of affairs*.

We extend v to a *satisfaction relation* on all wff's inductively, in the following way:

For a propositional letter p, $\models_{v} p$ iff v(p) = T $\models_{v} \neg \phi$ iff $\not\models_{v} \phi$ $\models_{v} \phi \land \psi$ iff $\models_{v} \phi$ and $\models_{v} \psi$ $\models_{v} \phi \lor \psi$ iff $\models_{v} \phi$ or $\models_{v} \psi$

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

A valuation v is a function from the set of propositional letters to $\{T, F\}$. We can view v as a *model*, an *interpretation* or as representing a *state of affairs*.

We extend v to a *satisfaction relation* on all wff's inductively, in the following way:

For a propositional letter p, $\models_{v} p$ iff v(p) = T $\models_{v} \neg \phi$ iff $\not\models_{v} \phi$ $\models_{v} \phi \land \psi$ iff $\models_{v} \phi$ and $\models_{v} \psi$ $\models_{v} \phi \lor \psi$ iff $\models_{v} \phi$ or $\models_{v} \psi$ $\models_{v} \phi \Rightarrow \psi$ iff $\models_{v} \psi$ or $\not\models_{v} \phi$

Semantics

The connectives of PL denote *truth functions*: the truth value of a wff ϕ is a function of the truth values of the sub-formulas of ϕ .

A valuation v is a function from the set of propositional letters to $\{T, F\}$. We can view v as a *model*, an *interpretation* or as representing a *state of affairs*.

We extend v to a *satisfaction relation* on all wff's inductively, in the following way:

For a propositional letter p, $\models_{v} p$ iff v(p) = T $\models_{v} \neg \phi$ iff $\not\models_{v} \phi$ $\models_{v} \phi \land \psi$ iff $\models_{v} \phi$ and $\models_{v} \psi$ $\models_{v} \phi \lor \psi$ iff $\models_{v} \phi$ or $\models_{v} \psi$ $\models_{v} \phi \Rightarrow \psi$ iff $\models_{v} \psi$ or $\not\models_{v} \phi$ $\models_{v} \phi \Leftrightarrow \psi$ iff $\models_{v} \psi$ or $\not\models_{v} \phi$ and $\not\models_{v} \psi$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Semantics

The set of connectives $\{\neg, \land, \lor, \Rightarrow, \Leftrightarrow\}$ is *functionally complete*: for all *n*, any boolean function $f : \{T, F\}^n \to \{T, F\}$ can be represented by a wff in PL.

Semantics

The set of connectives $\{\neg, \land, \lor, \Rightarrow, \Leftrightarrow\}$ is *functionally complete*: for all *n*, any boolean function $f : \{T, F\}^n \to \{T, F\}$ can be represented by a wff in PL.

The following sets of connectives are functionally complete:

$$\{\neg, \lor, \land\}$$
$$\{\neg, \lor\}$$
$$\{\neg, \land\}$$
$$\{\neg, \Rightarrow\}$$

Semantics

The set of connectives $\{\neg, \land, \lor, \Rightarrow, \Leftrightarrow\}$ is *functionally complete*: for all *n*, any boolean function $f : \{T, F\}^n \to \{T, F\}$ can be represented by a wff in PL.

The following sets of connectives are functionally complete:

 $\{\neg, \lor, \land\}$ $\{\neg, \lor\}$ $\{\neg, \land\}$ $\{\neg, \Rightarrow\}$

Ex.: Show that $\{\lor, \Rightarrow\}$ is *not* functionally complete.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Semantics

Let Γ be a set of wff's, and let ϕ be a wff. Γ *entails* ϕ ($\Gamma \models \phi$) if for every valuation function v, if $\models_v \psi$ for every $\psi \in \Gamma$, then $\models_v \phi$.

We shall say that a set Γ of wffs is *(semantically) consistent* if there is a valuation v such that $\models_v \psi$ for every $\psi \in \Gamma$.

Proof theory

The system H

Axioms (schemas):

P1.
$$\phi \Rightarrow (\psi \Rightarrow \phi)$$

P2. $(\phi \Rightarrow (\psi \Rightarrow \xi)) \Rightarrow ((\phi \Rightarrow \psi) \Rightarrow (\phi \Rightarrow \xi))$
P3. $(\neg \phi \Rightarrow \neg \psi) \Rightarrow (\psi \Rightarrow \phi)$

Rule of inference:

(MP)

$$\frac{\phi \quad \phi \Rightarrow \psi}{\psi}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Proof theory

A *derivation* (=*proof*) of a sentence ϕ from a set of sentences Γ is a finite sequence of sentences such that ϕ is the last sentence in the sequence, and for each sentence ψ in the sequence,

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Proof theory

A *derivation* (=*proof*) of a sentence ϕ from a set of sentences Γ is a finite sequence of sentences such that ϕ is the last sentence in the sequence, and for each sentence ψ in the sequence,

1) $\psi \in \Gamma$,

Proof theory

A *derivation* (=*proof*) of a sentence ϕ from a set of sentences Γ is a finite sequence of sentences such that ϕ is the last sentence in the sequence, and for each sentence ψ in the sequence,

1) $\psi \in \Gamma$,

or

2) ψ is an axiom,

Proof theory

A *derivation* (=*proof*) of a sentence ϕ from a set of sentences Γ is a finite sequence of sentences such that ϕ is the last sentence in the sequence, and for each sentence ψ in the sequence,

1) $\psi \in \Gamma$,

or

2) ψ is an axiom,

or

3) ψ results from applying an inference rule to previous sentences in the sequence.

Proof theory

A *derivation* (=*proof*) of a sentence ϕ from a set of sentences Γ is a finite sequence of sentences such that ϕ is the last sentence in the sequence, and for each sentence ψ in the sequence,

1) $\psi \in \Gamma$,

or

2) ψ is an axiom,

or

3) ψ results from applying an inference rule to previous sentences in the sequence.

A sentence ϕ is *provable* from a set of sentences Γ ($\Gamma \vdash_H \phi$) if there is a derivation of ϕ from Γ .

Proof theory

A *derivation* (=*proof*) of a sentence ϕ from a set of sentences Γ is a finite sequence of sentences such that ϕ is the last sentence in the sequence, and for each sentence ψ in the sequence,

1) $\psi \in \Gamma$,

or

2) ψ is an axiom,

or

3) ψ results from applying an inference rule to previous sentences in the sequence.

A sentence ϕ is *provable* from a set of sentences Γ ($\Gamma \vdash_H \phi$) if there is a derivation of ϕ from Γ . A sentence ϕ is a *theorem* if ϕ is provable from the empty set ($\vdash_H \phi$).

Proof theory

A *derivation* (=*proof*) of a sentence ϕ from a set of sentences Γ is a finite sequence of sentences such that ϕ is the last sentence in the sequence, and for each sentence ψ in the sequence,

1) $\psi \in \Gamma$,

or

2) ψ is an axiom,

or

3) ψ results from applying an inference rule to previous sentences in the sequence.

A sentence ϕ is *provable* from a set of sentences Γ ($\Gamma \vdash \phi$) if there is a derivation of ϕ from Γ . A sentence ϕ is a *theorem* if ϕ is provable from the empty set ($\vdash \phi$).

Propositional Logic

Modal logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Soundness

If ϕ is provable from Γ , then ϕ is entailed by Γ .

Soundness

If ϕ is provable from Γ , then ϕ is entailed by Γ .

$$\mathsf{\Gamma}\vdash\phi\to\mathsf{\Gamma}\models\phi$$

Soundness

If ϕ is provable from Γ in H, then ϕ is entailed by Γ in PL.

$$\Gamma \vdash_{H} \phi \to \Gamma \models_{PL} \phi$$

Propositional Logic

Modal logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Completeness

If ϕ is entailed by Γ , then ϕ is provable from Γ .

Propositional Logic

Modal logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Completeness

If ϕ is entailed by Γ , then ϕ is provable from Γ .

$${\sf \Gamma} \models \phi \to {\sf \Gamma} \vdash \phi$$

Completeness

If ϕ is entailed by Γ in *PL*, then ϕ is provable from Γ in *H*.

$$\Gamma\models_{PL}\phi\to\Gamma\vdash_H\phi$$

- 'It is necessary that φ '
- 'It is possible that φ '

- 'It is necessary that φ '
- 'It is possible that φ '
- $\Box \varphi$
- $\Diamond \varphi$

- 'It is necessary that φ '
- 'It is possible that φ '
- $\Box \varphi$
- $\Diamond \varphi$
- If φ is a wff, so is $\Box \varphi$ ($\Diamond \varphi$)

Propositional Logic

Modal logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Axioms

• (T) $\Box \varphi \Rightarrow \varphi$

Propositional Logic

Modal logic

- (T) $\Box \varphi \Rightarrow \varphi$
- (4) $\Box \varphi \Rightarrow \Box \Box \varphi$

- (T) $\Box \varphi \Rightarrow \varphi$
- (4) $\Box \varphi \Rightarrow \Box \Box \varphi$
- (5) $\Diamond \varphi \Rightarrow \Box \Diamond \varphi$

- (T) $\Box \varphi \Rightarrow \varphi$
- (4) $\Box \varphi \Rightarrow \Box \Box \varphi$
- (5) $\Diamond \varphi \Rightarrow \Box \Diamond \varphi$
- (B) $\varphi \Rightarrow \Box \Diamond \varphi$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- (T) $\Box \varphi \Rightarrow \varphi$
- (4) $\Box \varphi \Rightarrow \Box \Box \varphi$
- (5) $\Diamond \varphi \Rightarrow \Box \Diamond \varphi$
- (B) $\varphi \Rightarrow \Box \Diamond \varphi$
- (D) $\Box \varphi \Rightarrow \Diamond \varphi$

Propositional Logic

Modal logic

Axioms

• (N) $\vdash \varphi / \vdash \Box \varphi$

- (N) $\vdash \varphi / \vdash \Box \varphi$
- (K) $\Box(\varphi \Rightarrow \psi) \Rightarrow (\Box \varphi \Rightarrow \Box \psi)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

• KT = PL + N + K + T

• KD4 = PL + N + K + D + 4

- KT = PL + N + K + T
- KD4 = PL + N + K + D + 4
- KT4 (S4)
- KT5 (S5)

Propositional Logic

Modal logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Semantics

Α	$\neg A$
W	f
f	W

A	$\Box A$
W	?
f	f

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Α	⟨⟨A
W	W
f	?

Interlude: relations

- 'x bears relation R to y'
- xRy or $x \rightarrow y$

Interlude: relations

- 'x bears relation R to y'
- xRy or $x \rightarrow y$
- (Reflexivity) for all x: xRx
- (Symmetry) for all x, y: $xRy \Rightarrow yRx$
- (Transitivity) for all x, y, z: $(xRy \land yRz) \Rightarrow xRz$
- (Euclidian) for all x, y, z: $(xRy \land xRz) \Rightarrow yRz$
- (Seriality) for all x, there exists y: xRy

Propositional Logic

Modal logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Interlude: relations

• Relations that are reflexive, symmetric and transitive are called *equivalence relations*.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Interlude: relations

- Relations that are reflexive, symmetric and transitive are called *equivalence relations*.
- Relations that are reflexive and transitive are called preorders.

- Let W be a non-empty set of worlds.
- $v : Atoms \times W \rightarrow \{T, F\}$

- Let W be a non-empty set of worlds.
- $v : Atoms \times W \rightarrow \{T, F\}$
- As before we extend v into a *satisfaction relation* on all wff's inductively
- $w \models_v p = v(p, w)$

- Let W be a non-empty set of worlds.
- $v : Atoms \times W \rightarrow \{T, F\}$
- As before we extend v into a *satisfaction relation* on all wff's inductively
- $w \models_v p = v(p, w)$
- $w \models_v \neg \varphi$ iff $w \not\models_v \varphi$
- . . .

- Let W be a non-empty set of worlds.
- $v : Atoms \times W \rightarrow \{T, F\}$
- As before we extend v into a *satisfaction relation* on all wff's inductively
- $w \models_v p = v(p, w)$
- $w \models_v \neg \varphi$ iff $w \not\models_v \varphi$
- . . .
- $w \models_v \Box \varphi$ iff for all w' such that $wRw' : w' \models_v \varphi$

- Let W be a non-empty set of worlds.
- $v : Atoms \times W \rightarrow \{T, F\}$
- As before we extend v into a *satisfaction relation* on all wff's inductively
- $w \models_v p = v(p, w)$
- $w \models_v \neg \varphi$ iff $w \not\models_v \varphi$
- . . .
- $w \models_v \Box \varphi$ iff for all w' such that $wRw' : w' \models_v \varphi$
- $w \models_v \Diamond \varphi$ iff for some w' such that $wRw' : w' \models_v \varphi$

- A frame \mathcal{F} is an ordered pair (W, R)
- A model \mathcal{M} is a triple (W, R, v)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A frame \mathcal{F} is an ordered pair (W, R)
- A model \mathcal{M} is a triple (W, R, v)
- ${\mathcal M}$ is said to be 'based' on ${\mathcal F}$

• A wff φ is valid on a frame (W, R) iff

- A wff φ is valid on a frame (W, R) iff
- for every model (W, R, v) based on (W, R)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A wff φ is valid on a frame (W, R) iff
- for every model (W, R, v) based on (W, R)
- and every $w \in W$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A wff φ is valid on a frame (W, R) iff
- for every model (W, R, v) based on (W, R)
- and every $w \in W$,
- $w \models_v \varphi$

- (N) $\vdash \varphi / \vdash \Box \varphi$
- (K) $\Box(\varphi \Rightarrow \psi) \Rightarrow (\Box \varphi \Rightarrow \Box \psi)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

• (T) $\Box \varphi \Rightarrow \varphi$

- (4) $\Box \varphi \Rightarrow \Box \Box \varphi$
- (5) $\Diamond \varphi \Rightarrow \Box \Diamond \varphi$
- (B) $\varphi \Rightarrow \Box \Diamond \varphi$
- (D) $\Box \varphi \Rightarrow \Diamond \varphi$

Propositional Logic

Modal logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Countermodel to 4

• Let $\mathcal{M} = (W, R, v)$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Countermodel to 4

- Let $\mathcal{M} = (W, R, v)$
- $W = \{w, w', w''\}$
- $R = \{(w, w'), (w', w'')\}$
- v(p,w) = v(p,w') = T
- v(p, w'') = F

- (T) $\Box \varphi \Rightarrow \varphi$ reflexive
- (4) $\Box \varphi \Rightarrow \Box \Box \varphi$ transitive
- (5) $\Diamond \varphi \Rightarrow \Box \Diamond \varphi$ Euclidian
- (B) $\varphi \Rightarrow \Box \Diamond \varphi$ symmetric
- (D) $\Box \varphi \Rightarrow \Diamond \varphi$ serial