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PLAN OF THIS COURSE

1. Puzzles. Logics of knowledge and belief. Epistemic and

Doxastic models.

2. Core of Standard (“Hard”) Dynamic-Epistemic Logic:

Public and Private announcements. Event models. The Product

Update Mechanism.

3. Belief Revision: Plausibility Models. Conditional belief. Belief

Upgrades. Doxastic event models and the Action-Priority Rule.

4. Further Topics in the last three lectures: Iterated Belief

Revision. Belief Merge. Collective Learning. Informational

Cascades. Surprise Examination Paradox etc.
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2.5. Cheating and the Failure of Standard DEL

Our update product works very well when dealing with “knowledge”, or

even with (possibly false) beliefs, as long as these false beliefs are

never contradicted by new information.

However, in the latest case, update product gives unintuitive results: if

an agent A is confronted with a contradiction between previous beliefs

and new information she starts to believe the contradiction, and so she

starts to believe everything!

In terms of epistemic models, this means that in the updated model,

there are no A-arrows originating in the real world.
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Counterexample

Recall the state model immediately after taking a peek, i.e. the output

of Scenario 4:

�� ��
�� ��∗H

c
��

a,b

}}||||||||
a,b

  BBBBBBBB

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT

So, now, c privately knows that the coin lies Heads up.
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Counterexample Continued

In Scenario 5 (happening after the cheating in Scenario 4), agent c

sends a secret announcement to his friend a (who has not suspected

any cheating till now!), saying:

“I know that H ”.

This is a fully private communication !a,cϕ (from c to a) of the

sentence

ϕ := KcH,

i.e. with event model

�� ��*ϕa,c
00

b //
�� ��true a,b,cxx
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Recall that, according to our intuition, the updated model for the

situation after this private announcement should be:

�� ��
�� ��∗H

a,c
��

b

}}||||||||
b

  BBBBBBBB

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT
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However, the update product gives us (something bisimilar to):

�� ��
�� ��∗H

c
��

b

}}||||||||
b

  BBBBBBBB

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT

There are no surviving a-arrows originating in the real world. According

to our semantics, a will believe everything after this communication:

encountering a contradiction, agent a simply gets crazy!

Fixing this problem requires modifying update product by

incorporating ideas from Belief Revision Theory.
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3.1. The Problem of Belief Revision

What happens if I learn a new fact ϕ that goes in con-

tradiction to my old beliefs?

If I accept the fact ϕ, I have to give up some of my old beliefs.

But which of them?

Maybe all of them?! No, I should maybe try to maintain as much

as possible of my old beliefs, while still accepting the new fact ϕ

(without arriving to a contradiction).
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Example

Suppose I believe two facts p and q and (by logical closure) their

conjunction p ∧ q. So my belief base is the following

{p, q, p ∧ q}.

Suppose now that I learn the last sentence was actually false.

Obviously, I have to revise my belief base, eliminating the sentence

p ∧ q, and replacing it with its negation: ¬(p ∧ q).
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But the base

{p, q,¬(p ∧ q)}

is inconsistent!

So I have to do more!

Obviously, to accommodate the new fact ¬(p ∧ q), I have to give up

either my belief in p or my belief in q.

But which one?
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Belief Revision Theory

Standard Belief Revision Theory, also called AGM theory (from

authors Alchourrón, Gärdenfors and Makinson) postulates as given:

• theories (“belief sets” or “belief bases”) T : logically closed

sets of sentences

• input: new information (a formula) ϕ

• a revision operator ∗: a map associating a theory T ∗ ϕ to

each pair (T, ϕ) of a theory and an input
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Interpretation

T ∗ϕ is supposed to represent the new belief base (“new theory”)

theory after learning ϕ:

the agent’s new set of beliefs, given that the initial set of beliefs

was T and that the agent has learned ϕ (and only ϕ).
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AGM Postulates: The “Success” Axiom

AGM authors impose a number of axioms on the operation ∗, which

may be called “rationality conditions”, since they are meant to

govern the way a rational agent should revise his/her beliefs.

EXAMPLE: The ‘AGM ‘Success” Postulate

ϕ ∈ T ∗ ϕ

“After revising with ϕ, the agent’s (revised) beliefs include (the belief

in) ϕ.”
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Higher-Order Beliefs: “No Success”

Take a Moore sentence:

ϕ := p ∧ ¬Bp

After ϕ is learned, ϕ obviously becomes false!

But the Success Postulate asks us to believe (after learning ϕ) that ϕ is

true! In other words, it forces us (as a principle of rationality!) to

acquire false beliefs!
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The usual way to deal with this: simply accept that AGM cannot deal

with higher-order beliefs, so limit the language L to formulas that

express only “factual”, non-doxastic properties of the world.
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Changing beliefs about an unchanging world

The assumption underlying AGM theory is that the “world” that our

beliefs are about is not changed by our changes of belief.

But the “world” the higher-order beliefs are about includes the beliefs

themselves.

So (as the example of Moore sentences shows) the “world”, in this

sense, is always changed by our changes of belief!

16



“Saving” AGM

Nevertheless, we can reinterpret the AGM postulates to make them

applicable to doxastic sentences:

If T is the belief set at a given moment about the real state s at that

moment, then T ∗ ϕ should be understood as a belief set about the

same state s, as it was before the learning took place.

In other words, T ∗ ϕ captures the agent’s beliefs AFTER learning ϕ

about what was the case BEFORE the learning.
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Conditional Beliefs

Note that this expresses a feature of the agent’s belief revision

policy: if given information ϕ, the agent would come to believe that ψ

was the case.

Another way to express this is that T ∗ ϕ captures conditional beliefs

Bϕψ :

we write ψ ∈ T ∗ ϕ iff Bϕψ, i.e. if the agent believes ψ given ϕ.

We can think of conditional beliefs Bϕψ as “contingency” plans

for belief change: in case I will find out that ϕ was the

case, I will believe that ψ was the case.
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3.2. Multi-Agent Plausibility Models

A multi-agent plausibility model:

S = (S,≤a,∼a, ‖.‖)a∈A

• S a set of possible “worlds” (“states”)

• A a (finite) set of agents

• ≤a preorders on S “a’s plausibility” relation

• ∼a equivalence relations on S: a’s (“hard”) epistemic

possibility (indistinguishability)

• ‖.‖ : Φ→ P(S) a valuation map for a set Φ,

subject to a number of additional conditions.
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Explanation of terms

Recall:

Preorder means reflexive and transitive:

∀s ∈ S s ≤a s,

∀s, t, w ∈ S ( s ≤a t ∧ t ≤a w ⇒ s ≤a w ).

NOTE: Here, s <a t means that s ≤a t but t 6≤a s.
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Reading

We read s <a t as saying that:

world t is “better”, or “more typical”, or “more plausible”

than world s for agent a.

s ≤a t is the non-strict version:

world t is “at least as good”, “at least as typical”, or “at

least as plausible” as world s for agent a.
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The Conditions

The conditions are the following:

1. “plausibility implies possibility”:

s ≤a t implies s ∼a t.

2. the preorders are “locally connected” within each

information cell, i.e. indistinguishable states are comparable:

s ∼a t implies either s ≤a t or t ≤a s

3. We consider S to be finite (else we need to require also that ≤a is

converse well-founded).
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Plausibility encodes Possibility!

Given these conditions, it immediately follows that two states

are indistinguishable for an agent iff they are comparable

w.r.t. the corresponding plausibility relation:

s ∼a t iff either s ≤a t or t ≤a s.

But this means that it is enough to specify the plausibility

relations ≤a. The “possibility” (indistinguishability) relation can

simply be defined in terms of plausibility
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Simplified Presentation of Plausibility Models

So, from now on, we can identify a multi-agent plausibility model

with a structure

(S,≤a, ‖.‖)a∈A ,

satisfying the above conditions, for which we define ∼a as:

∼a:=≤a ∪ ≥a

In the same way as before, we define the satisfaction relation s |= ϕ, or

equivalently we extend the truth map ‖ϕ‖S to all propositional

formulas.
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Knowledge, Conditional Belief

To define modalities, we need to extend the truth map further.

First the notion of knowledge is defined for each agent as follows:

s |= Kaϕ iff t |= ϕ for all t such that s ∼a t

The notion of (conditional) belief at a world s is defined as

truth in all the most plausible worlds that are epistemi-

cally possible in s (and satisfy the given condition P ⊆ S):

s |= BPa ϕ iff t |= ϕ for all t ∈Max≤a
{t ∈ P : t ∼a s}.
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Example of a Single Agent Model: Prof Winestein

Professor Albert Winestein feels that he is a genius. He knows that

there are only two possible explanations for this feeling: either he is a

genius or he’s drunk. He doesn’t feel drunk, so he believes that he is

a sober genius.

However, if he realized that he’s drunk, he’d think that his genius

feeling was just the effect of the drink; i.e. after learning he is drunk

he’d come to believe that he was just a drunk non-genius.

In reality though, he is both drunk and a genius.
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Formalizing the story

Our assumptions can be formalized as:

Ba genius

Ka(genius ∨ drunk)

Ba¬drunk

Bdrunka ¬genius

drunk ∧ genius

The first four assumptions concern Albert’s knowledge and

(conditional) beliefs, while the fifth concerns reality.
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The Model

�� ��
�� ��∗d, g a //

�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

Here, for precision, I included both positive and negative facts in the

description of the worlds. The actual world is (d, g).

Albert considers (d,¬g) as being more plausible than (d, g), and

(¬d, g) as more plausible than (d,¬g). But he knows (Ka) he’s

drunk or a genius, so we did NOT include any world (¬d,¬g).
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Full Introspection of Knowledge and Beliefs

It is easy to see that our definitions imply that:

Baϕ⇒ BaBaϕ, Baϕ⇒ KaBaϕ,

¬Baϕ⇒ Ba¬Baϕ, ¬Baϕ⇒ Ka¬Baϕ.

“Ideal” agents know what they believe and what they don’t: if

they believe something, then they believe, and in fact they know, that

they believe it.

Similarly, if they don’t believe something, then they believe, in fact

they know, that they don’t believe it.
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WARNING: Difference from Kripke semantics

Plausibility models ARE Kripke models, but the semantics of

belief in a plausibility model has NOT been given by the standard

Kripke semantics. So “belief” is NOT the Kripke modality for

the plausibility relation.
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3.3. The Logic of Knowledge and Conditional Beliefs

Necessitation Rule:

From ` ϕ infer ` Bψa ϕ and ` Kaϕ.

Normality: ` Bθa(ϕ⇒ ψ)⇒ (Bθaϕ⇒ Bθaψ)

Truthfulness of Knowledge: ` Kaϕ⇒ ϕ

Persistence of Knowledge: ` Kaϕ⇒ Bθaϕ

Full Introspection: ` Bθaϕ⇒ KBθaϕ

` ¬Bθaϕ⇒ Ka¬Bθaϕ
Hypotheses are (hypothetically) accepted:

` Bϕaϕ
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Proof System, continued

Consistency of Revision:

¬Ka¬ϕ⇒ ¬BϕaFalse
Inclusion:

` Bϕ∧ψa θ ⇒ Bϕa (ψ ⇒ θ)

Rational Monotonicity:

` Bϕa (ψ ⇒ θ) ∧ ¬Bϕa¬ψ ⇒ Bϕ∧ψa θ

If we add all the propositional validities and the Modus Ponens

rule, we obtain a complete logic for plausibility models.
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3.4. “Dynamic” Belief Revision

We saw that AGM revision, or (equivalently) conditional beliefs, are in

a sense “static”:

they capture the agent’s new (revised) beliefs about the OLD state of

the world (as it was BEFORE the revision).

BUT the important problem is: to compute the agent’s new beliefs

(after learning some new information ϕ) about the NEW state of

the world (as it is AFTER the learning)!

This is the subject of “Dynamic” Belief Revision theory.

From a semantical point of view, dynamic belief revision is about

“revising” the whole relational structure: changing the plausibility

relation (and/or its domain).
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Upgrades (on single-agent models)

A belief upgrade is a model transformer T , that takes any

plausibility model S = (S ≤, ‖ · ‖), and returns a new model

T (S) = (S′,≤′, ‖ · ‖ ∩ S′), having:

• as new set of worlds: some subset S′ ⊆ S,

• as new valuation: the restriction ‖ · ‖ ∩ S′ of the original valuation

to S′,

• as new plausibility relation: some converse-well-founded total

preorder ≤′ on S′.
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Hard and Soft Upgrades

An upgrade T is called soft if, for every model S, the map T : S → S is

total ; i.e. iff

S′ = S

for all S. A soft upgrade doesn’t add anything to the agent’s irrevocable

knowledge: it only conveys “soft information”, changing only the

agent’s beliefs or his belief-revision plans.

In contrast, a hard upgrade adds new knowledge, by shrinking the

state set to a proper subset S′ ⊂ S.
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Dynamic Operators

We can add to the language, in the usual way, dynamic operators [T ]ψ

to express the fact that ψ will surely be true (in the new model)

AFTER the upgrade T .
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Examples of Upgrades

(1) Update !ϕ (conditionalization with ϕ):

all the non-ϕ states are deleted and the same plausibility order is

kept between the remaining states.

(2) Radical upgrade ⇑ ϕ (Lexicographic upgrade with ϕ):

all ϕ-worlds become “better” (more plausible) than all

¬ϕ-worlds, and within the two zones, the old ordering remains.

(3) Conservative upgrade ↑ ϕ (minimal revision with ϕ):

the “best” ϕ-worlds become better than all other worlds, and

in rest the old order remains.
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Different attitudes towards the new information

These correspond to three different possible attitudes of the agent

towards the reliability of the source of the new information:

• Update: an infallible source. The source is “known” (guaranteed)

to be truthful.

• Radical (or Lexicographic) upgrade: the source is fallible,

but highly reliable, or at least very persuasive. The source is

strongly believed to be truthful.

• Conservative upgrade: the source is trusted, but only

“barely”. The source is (“simply”) believed to be truthful ; but this

belief can be easily given up later!

38



Learning that you’re drunk

Suppose that Albert learns that he is definitely drunk (say, by

seeing the result of his blood test). By updating with the sentence d,

we obtain: �� ��
�� ��d, g

a //
�� ��
�� ��d,¬g

which correctly reflects Albert’s new belief that he is not a genius.
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Exercise

Update Albert’s original model with a Moore sentence:

Suppose an infallible source (the Pope) tells Albert:

“Albert, you are drunk but you don’t believe it!”

d ∧ ¬Bad.

Check that after learning the new information, Albert not only believes,

but he knows that the new information was true before he learnt it.
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Updates give you knowledge

After any update !ϕ, the agent comes to know that ϕ was true

before the update.

we have the validity

[!ϕ]Ka(BEFORE ϕ).

“Updates give you KNOWLEDGE, and not just BELIEF!”

The reason is that an update !ϕ is performed ONLY when the new

information ϕ is absolutely certain: when the source of the

information is infallible.
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Mary Curry Enters the Story

Suppose that there is no blood test. Instead, he learns that he’s drunk

from somebody who is trusted but not infallible: NOT the Pope,

but Albert’s good friend Prof Mary Curry (not be confused with the

famous Prof Marie Curie).

So Mary Curry tells Albert:

“Man, you’re drunk !”
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What to do with Professor Winestein?

Albert trusts Mary, so he believes she’s telling the truth, but he

doesn’t know for sure: maybe she’s pulling his leg, or maybe she’s

simply wrong.

How should we upgrade the model

�� ��
�� ��∗d, g a //

�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

to capture Albert’s new beliefs?

There are two drunk-worlds (d, g) and (d,¬g). Which one should we

promote ahead of all the others?
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Which is Best?

Maybe we should promote both drunk-worlds, making them more

plausible than the other world (¬d, g):

�� ��
�� ��¬d, g a //

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g

Or maybe we should promote only the most plausible of the two:

�� ��
�� ��d, g

a //
�� ��
�� ��¬d, g a //

�� ��
�� ��d,¬g

Which is the best, most natural option??
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How Strong is Your Trust

Actually, they are both natural, in different contexts and given

different assumptions.

It all depends on how strong is Albert’s belief that Mary tells the

truth!
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Strong Belief in single-agent models

A sentence ϕ is strongly believed in a single-agent plausibility model

S if the following two conditions hold

1. ϕ is consistent with the agent’s knowledge:

‖ϕ‖S 6= ∅,

2. all ϕ-worlds are strictly more plausible than all

non-ϕ-worlds:

s > t for every s ∈ ‖ϕ‖S and every t 6∈ ‖ϕ‖S.

It is easy to see that strong belief implies belief.
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Strong Belief is Believed Until Proven Wrong

Actually, strong belief is so strong that it will never be given up

except when one learns information that contradicts it!

More precisely:

ϕ is strongly believed iff ϕ is believed and is also conditionally

believed given any new evidence (truthful or not) EXCEPT if

the new information is known to contradict ϕ; i.e. if:

1. Baϕ holds, and

2. Bθaϕ holds for every θ such that ¬Ka(θ ⇒ ¬ϕ).
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Example

The “presumption of innocence” in a trial is a rule that asks the

jury to hold a strong belief in innocence at the start of the trial.

In our Winestein example

�� ��
�� ��∗d, g a //

�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

Albert’s belief that he is sober (¬d) is a strong belief (although

it is a false belief).
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Radical Upgrade

If Albert has a strong belief that Mary is telling the truth,

he will have to choose the first option: promote both d-worlds

(in which Mary’s statement is true), making them both more

plausible than the other worlds.

This corresponds to radical upgrade: it involves a rather radical

revision of the prior beliefs, based on a strong belief in the correctness

of the new information.
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Example of Radical Upgrade

By performing a radical upgrade ⇑ d on the original model

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

we obtain �� ��
�� ��¬d, g a //

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g

So we see that Albert’s strong belief that he was sober has been

reverted: now he has acquired a strong belief that he is drunk!
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Fragile Trust

What if Albert’s trust in Mary is more “fragile”?

Say, he believes she’s telling the truth, but he doesn’t

strongly believe it: instead, he “barely believes” it.

This means that, after hearing Mary’s statement, he acquires a very

“weak” belief in it: if later some of his beliefs are found to be wrong

and he will have to revise them, then the first one to give up will be

his belief in Mary’s statement.
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Conservative Upgrade

In this case, Albert will have to choose the second option: pro-

mote only the most plausible d-world, leaving the rest

the same.

The change of order in this case is minimal: while acquiring a (weak)

belief in d, Albert keeps as much as possible of his prior plausibility

ordering (as much as it is consistent with believing d).

This corresponds to conservative upgrade.
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Example of Conservative Upgrade

In the original Winestein situation

�� ��
�� ��d, g

a //
�� ��
�� ��d,¬g a //

�� ��
�� ��¬d, g

a conservative upgrade ↑ d produces the model

�� ��
�� ��d, g

a //
�� ��
�� ��¬d, g a //

�� ��
�� ��d,¬g

In this new model we have: Bad ∧Bga¬d.

So Albert’s new belief that he is drunk is not strong, and so is very

fragile: if later Mary tells him he’s a genius, he’ll immediately revert

to believing that he was sober!
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Upgrades induce belief

We already saw that updates induce knowledge (in the new

information):

[!ϕ]Ka(BEFORE ϕ).

In contrast, soft upgrades only induce belief (in the new

information), and even this is only conditional on consistency with

prior knowledge:

Indeed, after a conservative or a radical upgrade, the agent only

comes to believe that ϕ (was the case), UNLESS he already

knew (before the upgrade) that ϕ was false; i.e. we have the

validity

¬Ka¬ϕ⇒ [↑ ϕ]Ba(BEFORE ϕ)
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Truthful and Un-truthful Upgrades

An upgrade is truthful if the new information ϕ is true (in the

real world). The previous upgrades were all truthful.

But one can also upgrade with false information: if instead

Mary told Albert “You are not a genius” and Albert strongly

believed her, then the resulting model, obtained by the radical

upgrade ⇑ ¬g, would have been

�� ��
�� ��d, g

a //
�� ��
�� ��¬d, g a //

�� ��
�� ��d,¬g

This is an un-truthful upgrade: Albert acquires a strong (false)

belief that he’s not a genius.
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Adding Mary Curry to the Winestein story

Albert Winestein’s best friend is Prof. Mary Curry.

She’s pretty sure that Albert is drunk: she can see this with her

very own eyes. All the usual signs are there!

She’s completely indifferent with respect to Albert’s genius:

she considers the possibility of genius and the one of non-genius as

equally plausible.
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However, having a philosophical mind, Mary Curry is aware of the

possibility that the testimony of her eyes may in principle be

wrong: it is in principle possible that Albert is not drunk, despite the

presence of the usual symptoms.

The model for Mary alone:

�� ��
�� ��¬d,¬g oo m //

�� ��
�� ��¬d, g m //

�� ��
�� ��d, g oo

m //
�� ��
�� ��d,¬g
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Multi-agent Model for Albert and Mary

�� ��
�� ��¬d, g

m
22
�� ��
�� ��d,¬g

arr

KK

m

���� ��
�� ��¬d,¬g

��

m

OO

�� ��
�� ��d, g

a

SS
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Muddy Children Example

Two children played with mud, and they both have mud in their

hair. They stand in line, with child 1 looking at the back of child 2.

So 1 can see if 2’s hair is dirty or not, but not the other way around.

(And no child can see himself.)

Let’s assume that (it is common knowledge that) each of them thinks

that it is more plausible that he is clean than that he is dirty. Also, (it

is common knowledge that) child 2 thinks that it is more plausible that

he himself (child 2) is clean than that child 1 is clean.
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Plausibility Model

�� ��
�� ��dd 33

++e _ Y �� ��
�� ��cd 33

�� ��
�� ��dc 33

++e _ Y �� ���� ��cc

Dotted arrows: child 1’s plausibility.

Continuous arrows: child 2’s plausibility.

RED: the real world.
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Information Partitions

From this, we can extract the information partitions:

_ _ _ _ _ _ _ _ _ _�
�
�

�
�
�

_ _ _ _ _ _ _ _ _ _

�� ��
�� ��dd

�� ��
�� ��cd

_ _ _ _ _ _ _ _ _ _�
�
�

�
�
�

_ _ _ _ _ _ _ _ _ _

�� ��
�� ��dc

�� ���� ��cc

Squares around the worlds: children’s information cells.

Dotted squares: child 1.

Continuous squares: child 2.
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3.5. Joint Upgrades and Updates

We can now apply the update or upgrade operations simultane-

ously to all the relations.

This corresponds to joint upgrades or joint updates:

some information ϕ is publicly announced, and it is com-

mon knowledge that all agents have the same attitude

towards the announcement: they upgrade or update with

ϕ in the same way (all doing an update, or a radical upgrade

etc).
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“Publicly Announced” Private Upgrades

Or the operation can be applied only to a single agent’s re-

lations (keeping the others unchanged), obtaining “publicly-

announced” private upgrades/updates:

it is common knowledge that a single agent a up-

grades/updates with ϕ, but also that the others do NOT

upgrade/update at all with ϕ.

For instance, imagine a publicly announces that he is

upgrading/updating with ϕ. It is commonly known that he is telling

the truth, but also that the others (not having direct access to the

evidence for ϕ) are not convinced of the reliability of the information ϕ.
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Different Attitudes

More generally, we can allow different agents to have dif-

ferent attitudes towards the new information, by applying dif-

ferent kinds of upgrade/update operations to different

agents’ relations.

NOTE though that this still assumes common knowledge of

every agent’s attitude towards the new information: the

agents commonly know what kind of upgrade/update is performed

by each of them.

To go beyond that, we’ll need event models!
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Muddy children example: A Joint Update

The Father announces:

“At least one of you is dirty”.

We take the Father to be an infallible source.

So this is an update !(d1 ∨ d2), yielding the updated model:

�� ��
�� ��dd 33

++e _ Y �� ��
�� ��cd 33

�� ��
�� ��dc
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Muddy children example : Joint Radical Upgrade

Alternatively, an older sister announces: “At least one of you is dirty”.

She is a highly trusted source, though not infallible:

This radical upgrade yields:

_____________
%%L

L�� ���� ��cc 33

s
s �� ��

�� ��dd 33
++e _ Y �� ��
�� ��cd 33

�� ��
�� ��dc
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Children example: “Publicly Announced” Private Upgrade

Alternatively, suppose that it is common knowledge that only child 2

highly trusts the sister; but that child 1 always disregards her

announcements, assuming they are just made-up stories. So sister’s

announcement will induce a publicly announced private upgrade by

child 2:

_____________
L

L�� ���� ��cc 33
yy

s
s �� ��

�� ��dd 33
++e _ Y �� ��
�� ��cd 33

�� ��
�� ��dc
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Muddy children example: Joint Conservative Upgrade

Alternatively, children hear a rumor that at least one of them is dirty.

It is barely believable, so they perform a joint conservative upgrade:

�� ��
�� ��dd 33

++e _ Y �� ��
�� ��cd 33

�� ���� ��cc 33
++e _ Y �� ��
�� ��dc
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3.6. Doxastic Event Models

More general upgrades, will look very much like the DEL event

models.

There are some differences though: first, DEL event models were

multi-agent, while the upgrades we saw were single-agent.

BUT... this can be easily fixed:

generalize to multi-agent upgrades, by having plausibility rela-

tions ≤a labeled by agents!

This was done by G. Aucher (– though using a different, more

“quantitative way”, way to encode plausibility relations, in terms of

Spohn ordinals representing “degrees of belief”).
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Event Plausibility Models (G. Aucher)

A multi-agent event plausibility model

Σ = (Σ,≤a, pre)

is just like a multi-agent state plausibility model, except that

its elements are now called events (or actions), and instead of

the valuation we have a precondition map pre, associating a

sentence preσ to each action σ.

Now, the preorders σ ≤a σ′ capture the agent’s plausibility

relations on events: a considers it at least as plausible that σ′

is happening than that σ is happening.
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Looking for a General Update Rule

We would like to compose any initial state plausibility model with

any event plausibility model in order to compute the new state

plausibility model after the event.

We want to keep the old DEL setting while also doing belief re-

vision: when restricted to the “hard” epistemic relations

∼a, our construction should amount just to taking the Product

Update

(S,∼a, ‖.‖)a∈A ⊗ (Σ,∼a, pre)a∈A

But how should we define the new plausibility ≤a on

input-pairs (s, σ) ?
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Various Rules

The first such plausibility update rule was proposed by G. Aucher.

A number of other such rules were proposed and discussed by H. van

Ditmarsch.

The one that I present here is the so-called “Action-Priority Rule”, was

proposed in (Baltag and Smets 2006). It has the advantage that it has

purely relational, “qualitative” presentation (without the need of

performing arithmetic operations on degrees of belief).

To derive the rule, we consider a number of special cases.
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First Case

Well, in case that the event models includes a strict plausibility order

between two events σ1, σ2 with precondition ϕ1, ϕ2

�� ��
�� ��σ1 : ϕ1

a //
�� ��
�� ��σ2 : ϕ2

then we kind of know the answer from the single-agent

upgrade: all the ϕ2-worlds (s2, σ2) should become strictly more

plausible than all the ϕ1-worlds (s1, σ1).
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The only problem is that, since we now have also worlds that are known

to be impossible by the agent, the above rule should NOT apply to those:

if the agent can already distinguish between s1 and s2, then he knows

which of the two is the case, so he doesn’t have to compare the outputs

(s1, σ1) and (s2, σ2).

So we get the following conditions:

s1 ∼a s2 and σ1 <a σ2 imply (s1, σ1) <a (s2, σ2),

and also

s1 6∼a s2 implies (s1, σ1) 6∼a (s2, σ2).
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Second Case

What if the event model includes two equally plausible events?

�� ��
�� ��σ1 : ϕ1

oo a //
�� ��
�� ��σ2 : ϕ2

We interpret this as lack of information: when the (unknown)

event happens, it doesn’t bring any information indicating which

is more plausible to be currently happening: σ1 or σ2. In this case

it is natural to expect the agents to keep unchanged their original

beliefs, or knowledge, about which of the two is more plausible.
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Let us denote by ∼= the equi-plausibility relation on events,

given by:

σ ∼=a σ
′ iff σ ≤a σ′ ≤a σ.

Then the last case gives us another condition:

s1 ≤a s2 and σ1 ∼=a σ2 implies (s1, σ1) ≤a (s2, σ2).
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Third Case

Finally, what if the two events are epistemically distinguishable:

σ 6∼a σ′ ?

Then, when one of them happens, the agent knows it is not the other

one.

By perfect recall, he can then distinguish the outputs of the events, and

hence the two outputs are not comparable. So

σ 6∼a σ′ implies (s1, σ1) 6≤a (s2, σ2).
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The Action-Priority Rule

Putting all these together, we get the following update rule, called

the Action-Priority Rule:

(s, σ) ≤a (s′, σ′) iff: either σ <a σ
′, s ∼a s

′ or σ ∼=a σ
′, s ≤a s

′.

This essentially says that we order the product space using the anti-

lexicographic preorder relation on comparable pairs (s, σ).
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The Action-Priority Update

As before, the set of states of the new model S⊗Σ is:

S ⊗ Σ := {(s, σ) : s |=S preσ}

The valuation is given by the original valuation: (s, σ) |= p iff

s |= p.

The plausibility relation is given by the Action-Priority Rule.

79



Interpretation

The anti-lexicographic preorder gives “priority” to the action

plausibility relation. This is not an arbitrary choice: it is in the

spirit of AGM revision. The action plausibility relation captures

the agent’s current beliefs about the current event: what

the agents really believe is going on at the moment.

In contrast, the input-state plausibility relations only capture

past beliefs. The past beliefs need to be revised by

the current beliefs, and NOT the other way around! The

doxastic action is the one that “changes” the initial doxastic state,

and NOT vice-versa.
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EXAMPLE: joint update

The event model for a joint radical update !ϕ is essentially the same as

in standard DEL (the event model for a “public announcement”):

�� ��
�� ��ϕ

(As usual for plausibility models, we do NOT draw the loops, but they

are there.)
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EXAMPLE: joint radical upgrade

The event model for a joint upgrade ⇑ ϕ is:

�� ��
�� ��¬ϕ

a,b,c,··· //
�� ��
�� ��ϕ

EXERCISE: Check that, for every state model S, S⊗Σ!ϕ is indeed

(isomorphic to) the result of performing the joint radical upgrade ⇑ ϕ
on S.
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EXAMPLE: publicly-announced private upgrade

The event model for a publicly-announced private (radical) upgrade

with ϕ is:

�� ��
�� ��¬ϕ a ++

ll
b 6=a

33
�� ��
�� ��ϕ
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Example: Secret (Fully Private) Announcement

Let us consider again the “cheating” Scenario from the beginning: the

referee (Charles, i.e. agent c) takes a peek at the coin and sees it’s

Heads up, when nobody looks. Alice (a) and Bob (b) don’t suspect

anything: they believe that nothing is really happening.

The DEL event model for this action was

�� ��
�� ��H

c
��

a,b

���� ��
�� ��true

a,b,c

TT
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By taking update product

�� ��
�� ��H

a,b,c
�� �� ��

�� ��T

a,b,c

TT
//a,b,coo

⊗

�� ��
�� ��H

c
��

a,b

���� ��
�� ��true

a,b,c

TT
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of the initial state and this DEL event model, we obtained a state

model of the situation after this action:

�� ��
�� ��∗H

c
��

a,b

}}||||||||
a,b

  BBBBBBBB

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT

This correctly reflected the agents’ BELIEFS after the cheating action.
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However, this is NOT the correct PLAUSIBILITY model for the new

situation: it does NOT correctly reflect the agents’ CONDITIONAL

beliefs after the cheating.

For instance, the above model (if seen as a plausibility model) would

suggest that, if later Charles tells Alice that he took a peek (without

telling her what face he saw), she will immediately start to believe that

he saw the coin Heads up!
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To compute the correct plausibility model, we need first to figure

the correct event plausibility for the above action. For this, we

still need to ask: what does this event tell Alice (a) and Bob (b)

about the face of the coin in case Charles (c) took a peek?

In other words, given this event, if Alice or Bob later learn that

Charles took a peek, what would they believe as more likely: that

he saw H or T?
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Clearly, this event doesn’t carry ANY new information for Alice and

Bob, so she should stick with whatever she believed before about the

coin. Hence, the event model is

�� ��
�� ��H

a,b,c

JJ

a,b !!DDDDDDDD

�� ��
�� ��T

a,b,c

TT

a,b}}zzzzzzzz
//a,boo

�� ��
�� ��true

a,b,c

TT
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The Action-Priority update of the original state (plausibility) model

with this event plausibility model (skipping the loops):

�� ��
�� ��H

�� ��
�� ��T//

a,b,coo

⊗
�� ��
�� ��H

a,b !!DDDDDDDD

�� ��
�� ��T

a,b}}zzzzzzzz
//a,boo

�� ��
�� ��true

gives us:
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�� ��
�� ��H

a,b

��????????????????

a,b

��

�� ��
�� ��T

a,b

��

a,b

������������������
//a,boo

�� ��
�� ��H

�� ��
�� ��T//

a,b,c
oo

So e.g. a still believes that c doesn’t know the face. However, if later

she’s given the information that he took a peek (without being told

what he saw), she’d know that he knows the face; but as for herself,

she’d still consider both faces equally plausible.

91



Solving The Problem from the beginning

What if now Charles secretely tells Alice that he knows the face

of the coin is Heads up?

With the setting of standard DEL, this drove Alice crazy: she

started believing everything!

Now, things are better. The real world (in which Charles knows

H) is still epistemically possible for Alice. So after the fully pri-

vate announcement !a(KcH), the plausibility model simply be-

comes:
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�� ��
�� ��∗H

b

~~}}}}}}}}
b

  AAAAAAAA

�� ��
�� ��H

a,b

""EEEEEEEEEEEEEEEEEEE

a,b

��

�� ��
�� ��T

a,b

��

a,b

||yyyyyyyyyyyyyyyyyyy
//a,boo

�� ��
�� ��H

�� ��
�� ��T//

a,b,c
oo

Exercise: what is the event model that gave us this plausibility model?
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Solving the standard “Muddy Children”

Three children, child 1 and child 2 are dirty. Originally, assume each

child considers equally plausible that (s)he’s dirty and that (s)he’s

clean:

�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

��

kk
3

!!

�� ���� ��dcd==

1
ss

aa

3
++

�� ���� ��ddcOO

2

��

33
1

}}�� ���� ��ccd gg

3 ''OOOOOOOOOOOO
�� ���� ��cdcOO

2

��

�� ���� ��dcc77

1wwoooooooooooo

�� ���� ��ccc
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Father makes the announcement: “At least one of you is dirty”. If he’s

an infallible source (classical Muddy children), then this is an update

!(d1 ∨ d2 ∨ d3), producing:

�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

��

kk
3

!!

�� ���� ��dcd==

1
ss

aa

3
++

�� ���� ��ddcOO

2

��

33
1

}}�� ���� ��ccd
�� ���� ��cdc

�� ���� ��dcc

If the children answer “I don’t know I am dirty”, and they are

infallible, then the update !(
∧
i ¬Kidi) produces:
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�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cdd
�� ���� ��dcd

�� ���� ��ddc

Now, in the real world (d, d, c), children 1 and 2 know they are dirty.
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Soft version of the puzzle

What happens if the sources are not infallible? Father’s announcement

becomes either a radical upgrade ⇑ (d1 ∨ d2 ∨ d3) or a conservative one

↑ (d1 ∨ d2 ∨ d3), producing:

�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

��

kk
3

!!

�� ���� ��dcd==

1
ss

aa

3
++

�� ���� ��ddcOO

2

��

33
1

}}�� ���� ��ccd gg

3 OOOOOOOOOOOO
�� ���� ��cdcOO

2

�� ���� ��dcc77

1
oooooooooooo

�� ���� ��ccc
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Do you believe you’re dirty?

What if next the father only asks them if they believe they are dirty?

And what if they are not infallible agents either (i.e. don’t trust each

other, but not completely), so that their answers are also soft

announcements?

After a (radical or conservative) upgrade with the sentence
∧
i ¬Bidi,

we obtain:
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�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

kk
3

�� ���� ��dcd==

1

aa

3

�� ���� ��ddcOO

2

33
1

�� ���� ��ccd gg

3 OOOOOOOOOOOO
�� ���� ��cdcOO

2

�� ���� ��dcc77

1
oooooooooooo

�� ���� ��ccc

Now (in the real world ddc), children 1 and 2 believe they are dirty:

so they will answer “yes, I believe I’m dirty”.
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Cheating Muddy Children

Let’s get back to the original puzzle: assume again that it is common

knowledge that nobody lies, so we have infallible announcement

(updates). After Father’s announcement, we got

�� ���� ��ddd77
1

wwoooooooooooo OO

2

��

gg
3

''OOOOOOOOOOOO

�� ���� ��cddOO

2

��

kk
3

!!

�� ���� ��dcd==

1
ss

aa

3
++

�� ���� ��ddcOO

2

��

33
1

}}�� ���� ��ccd
�� ���� ��cdc

�� ���� ��dcc
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Secret Communication

Suppose now the dirty children cheat, telling each other that they

are dirty. This is a secret communication between 1 and 2, in

which 3 doesn’t suspect anything: he thinks nothing happened.

So it has the event model:

�� ��
�� ��d1 ∧ d2

3 //
�� ��
�� ��true
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EXERCISE

Taking the Action-Priority Update of the previous model with this

event model.

Then model the next announcement (in which the two children say “I

know I’m dirty”, while the third says “I don’t know”) as a joint update

!(K1d1 ∧K2d2 ∧K3d3).

Note that, after this, child 3 does NOT get crazy: unlike in the standard

DEL (with Product update), he simply realizes that the others cheated!
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