Summer School on Mathematical Philosophy for Female Students

Introduction to Probability Theory, Algebra, and Set Theory

Catrin Campbell-Moore and Sebastian Lutz

Munich Center for Mathematical Philosophy
July 28, 2014

Supported by

Outline

Events as Sets of States
 Set Theory in Pictures

Events

Probability
Basic Concepts of Probability Conditional Probabilities

Random Variables

Outline

Events as Sets of States
 Set Theory in Pictures Events

Probability
 Basic Concepts of Probability Conditional Probabilities

Random Variables

Venn Diagrams

The domain, Ω, is a set

Example: $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$

A subset of the domain
$\left\{\omega_{2}, \omega_{3}\right\}$

Operations on Sets: Union and Intersection

Disjunction $\mathbf{A} \vee \mathbf{B}$

Intersection $A \cap B$
$\left\{\omega_{1}, \omega_{2}\right\} \cap\left\{\omega_{2}, \omega_{3}\right\}=\left\{\omega_{2}\right\}$

Conjunction $\mathbf{A} \wedge \mathbf{B}$

Operations on Sets: Subtraction and Complement

$A \wedge \neg B$

Complement $A^{c}=\Omega \backslash A$
$\left\{\omega_{1}, \omega_{2}\right\}^{c}=\left\{\omega_{3}\right\}$

Negation $\neg \mathbf{A}$

Relations Between Sets

Inferences With Venn Diagrams

$$
\begin{aligned}
& \left(A^{c}\right)^{c}=A \\
& A \cap(B \cup C)= \\
& A \backslash B=A \cap B^{c} \\
& (A \cap B) \cup(A \cap C) \\
& \neg \neg \mathbf{A} \leftrightarrow \mathbf{A} \\
& A \wedge(B \vee C) \\
& \leftrightarrow(A \wedge B) \vee(A \wedge C) \\
& \mathbf{A} \wedge \neg \mathbf{B}
\end{aligned}
$$

Partitions

$B_{1}, B_{2}, \ldots, B_{k}$ is a partition of Ω if and only if

$$
B_{1} \cup B_{2} \cup \cdots \cup B_{k}=\Omega \text { and } B_{i} \cap B_{j}=\varnothing \text { for } i \neq j
$$

If $B_{1}, B_{2}, \ldots, B_{k}$ is a partition, then for every A,

- $\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \cdots \cup\left(A \cup B_{k}\right)=A$.
- $\left(A \cap B_{i}\right) \cap\left(A \cap B_{j}\right)=\varnothing$ for $i \neq j$.
\Rightarrow A partition of Ω partitions every subset of Ω.

The Set of All States

- A state: A way in which the world could be.
- We call the set of all possible states Ω.
- Examples for Ω :
- The set of possible entire past, present and futures of the universe.
- \{heads, tails\}
- $\{$ egg rotten, egg good $\}$
- \{egg good and Jo hungry, egg good and Jo not hungry, egg rotten and Jo hungry, egg rotten and Jo not hungry\}
- $\left\{\right.$ Jo has height $\left.r \mathrm{~m}: r \in \mathbb{R}^{+}\right\}$
- \{The center of the vase is at $x: x$ is a point on the tabletop\}
- The set of infinite sequences of tosses of a coin.
- The set of models of a language L

Events as Sets of States: Basic Idea

Roughly, subsets of Ω are called events.

- $\Omega=\{\langle H, H\rangle,\langle H, T\rangle,\langle T, H\rangle,\langle T, T\rangle\}$
- The proposition $\mathbf{A}=$ "The first coin lands heads" describes the event $A=\{\langle H, H\rangle,\langle H, T\rangle\}$
- The proposition $\mathbf{B}=$ "At least one coin lands heads", describes the event $B=\{\langle H, H\rangle,\langle H, T\rangle,\langle T, H\rangle\}$
- $\Omega=\{$ Jo has height $r \mathrm{~m}: r \in \mathbb{R}\}$
- Is Jo taller than 2 m ?
- Events of interest:
$\{$ Jo has height $r \mathrm{~m}: r \leqslant 2\}$ and $\{$ Jo has height $r \mathrm{~m}: r>2\}$

Events as Sets of States: Formalism

$\Omega=\{$ Jo has height $r \mathrm{~m}$ and Ed has height $t \mathrm{~m}: r, t \in \mathbb{R}\}$
Suppose I'm interested in

- A: Jo is taller than 2 m
- B: Ed is taller than Jo

We will also then be interested in events which can be formed from combining A and B, e.g.

- $A \cap B$: Jo is taller than 2 m and Ed is taller than Jo
- A^{c} : Jo is not taller than 2 m

We call the set of the events that we're interested in \mathcal{F}.
We assume that \mathcal{F} is a Boolean algebra, i.e.

- $\varnothing \in \mathcal{F}$ and $\Omega \in \mathcal{F}$.
- If $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$.

Boolean Algebra

A Boolean algebra which contains A and B will also contain all the subsets which you can draw lines around.

The Boolean algebra generated by A_{1}, \ldots, A_{n} is just the smallest Boolean algebra containing all of A_{1} to A_{n}.

Events as Sets of States: Some More

For example $\Omega=\{\langle H, H\rangle,\langle H, T\rangle,\langle T, H\rangle,\langle T, T\rangle\}$, the following are Boolean algebras over Ω

- $\{\varnothing, \Omega\}$
- $\{\varnothing,\{\langle H, H\rangle,\langle H, T\rangle\},\{\langle T, H\rangle,\langle T, T\rangle\}, \Omega\}$
- $\mathcal{P}(\Omega)$

Consequences of the formalism:

- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \backslash B \in \mathcal{F}$.

Sometimes it is asked that the event space is a σ-algebras:

- $\varnothing \in \mathcal{F}$ and $\Omega \in \mathcal{F}$.
- If $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$.
- If $A_{1}, A_{2}, A_{3}, \ldots \in \mathcal{F}$ then $A_{1} \cup A_{2} \cup A_{3} \cup \ldots \in \mathcal{F}$.

Atoms in a Boolean algebra

A is an atom of a Boolean algebra \mathcal{F} if there is no $B \in \mathcal{F}$ with $\varnothing \subset B \subset A$.

- If \mathcal{F} is finite we can always partition Ω into atoms like this.
- All other events in \mathcal{F} are unions of the atoms.
- Note: Atoms can be sets of states.
- Note: The atoms form a partition of \mathcal{F}.

Outline

Events as Sets of States Set Theory in Pictures Events

Probability

Basic Concepts of Probability Conditional Probabilities

Random Variables

What is Probability?

- $P: \mathcal{F} \rightarrow \mathbb{R}$
- How likely the event is to happen.
- We can think of this by taking the size of the areas in the diagrams into account.
- We stipulate that the size of the diagram is 1 .
- $P(A)$ measures the area A.

Just Look at the Atoms

We want to calculate the size of each of $A \in \mathcal{F}$.

- To do this we can just look at the size of the atoms.
- Since the atoms partion $\Omega, \sum_{A \text { is an atom }} P(A)=1$.

Atom C	$P(C)$
$A \cap B$	0.4
$A \cap B^{c}$	0.3
$A^{c} \cap B$	0.2
$A^{c} \cap B^{c}$	0.1

$\left.\begin{array}{|l|l|}\hline 0.3 & \\ \hline & \\ & \\ \hline 0.1 & \\ \hline & \\ \hline\end{array}\right\} A$

This allows us to work out the other probabilities of $B \in \mathcal{F}$:
$P(D)=\sum_{C}$ is an atom and $C \subseteq D P(C) \quad\left(\right.$ Note: $\sum_{\varnothing} P(C)=0$)
$P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)=0.4+0.3=0.7$

The Axiomatic Approach

In general we might not have atoms so we give axioms that don't presuppose atoms.
$P: \mathcal{F} \rightarrow \mathbb{R}$ satisfying:

Normalisation:
$P(\Omega)=1$

Positivity: $P(A) \geqslant 0$

Finite Additivity: If $A \cap B=\varnothing$ then $P(A \cup B)=P(A)+P(B)$

When we have infinite spaces and a σ-algebra we sometimes add:

- σ-Additivity: If each $A_{i} \in \mathcal{F}$ and $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$ then $P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$

Consequences of the Axioms

$$
P\left(A^{c}\right)=1-P(A)
$$

If $A \subseteq B$
then $P(A) \leqslant P(B)$

$P(A \cup B)+P(A \cap B)$

$$
=P(A)+P(B)
$$

These can also be derived from the axioms.

$$
\text { - } A \cap A^{c}=\varnothing \text { so } 1=P(\Omega)=P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)
$$

Conditional Probabilities

- $P(A \mid B)$: "The probability of A given B "
- Remove the area outside B, pretend that B has size 1 .

- This should satisfy the ratio formula:

$$
\text { If } P(B)>0 \text { then } P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- The ratio formula can be read as a definition or as a restriction.

Probabilistic Independence

A is probabilistically independent from B if and only if $P(A \mid B)=P(A)$.

Equivalently: $P(A \cap B)=P(A) \cdot P(B)$

- because

$$
P(A \cap B)=\frac{P(A \cap B)}{P(B)} P(B)=P(A \mid B) \cdot P(B)=P(A) \cdot P(B)
$$

If A and B are independent then from knowing $P(A)$ and $P(B)$ one can find the probabilities of all the events in the Boolean algebra generated by A and B.

Law of total probability

The law of total probability says that if B_{1}, \ldots, B_{k} is a partition of Ω then

$$
P(A)=\sum_{i=1}^{k} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)
$$

Bayes' Theorem

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(B \cap A) \cdot P(B)}{P(A) \cdot P(B)}=\frac{P(A \mid B) \cdot P(B)}{P(A)}
$$

Use the law of total probability: If B_{1}, \ldots, B_{k} is a partition of Ω, then

$$
P\left(B_{m} \mid A\right)=\frac{P\left(A \mid B_{m}\right) \cdot P\left(B_{m}\right)}{\sum_{i=1}^{k} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)}
$$

Example:

- Jo knows that she has one of three biased coins: $P\left(\right.$ Head $\left.\mid B_{1}\right)=0.6, P\left(\right.$ Head $\left.\mid B_{2}\right)=0.7, P\left(\right.$ Head $\left.\mid B_{3}\right)=0.6$.
- $P\left(B_{1}\right)=0.5, P\left(B_{2}\right)=0.3, P\left(B_{3}\right)=0.2$

Then

$$
P\left(B_{2} \mid \text { Head }\right)=\frac{0.7 \times 0.3}{0.6 \times 0.5+0.7 \times 0.3+0.6 \times 0.2}=\frac{0.21}{0.63}=\frac{1}{3}
$$

Outline

Events as Sets of States

 Set Theory in Pictures Events
Probability

Basic Concepts of Probability Conditional Probabilities

Random Variables

What is a Random Variable?

A random variable is a function from Ω to \mathbb{R},

$$
\begin{aligned}
X: \Omega & \rightarrow \mathbb{R} \\
\omega & \mapsto X(\omega)
\end{aligned}
$$

such that

$$
\{\omega: X(\omega) \leq r\} \in \mathcal{F} \text { for all } r \in \mathbb{R} .
$$

- $\{\omega: X(\omega) \leq r\}=:\{X \leq r\}$
- $\{\omega: X(\omega)=r\}=:\{X=r\}$ etc.
- Note: Random variables are neither variables nor random.

Examples

- The outcome of a roll of a die.
- $\Omega=\{1$ on top, 2 on top, $\ldots, 6$ on top $\}$
- $X(\{1$ on top $\})=1, \ldots, X(\{6$ on top $\})=6$
- $\Omega=\{$ Jo has height $r \mathrm{~m}$ and Ed has height $t \mathrm{~m}: r, t \in \mathbb{R}\}$
- $X(\omega)=$ Jo's height
- $Y(\omega)=$ Ed's height
- $\Omega=$

The set of entire past, present and futures of the universe

- $X(\omega)$ how rich I am at time t_{0} in ω, measured in Euro
- $\Omega=\{$ it rains today, it does not rain today $\}$
- $X(\omega)$ how happy I am if I take my umbrella today

Algebraic Operations on Random Variables

$\Omega=\{$ Jo has height $r \mathrm{~m}$ and Ed has height $t \mathrm{~m}: r, t \in \mathbb{R}\}$
$X(\omega)=$ Jo's height
$Y(\omega)=$ Ed's height
$(X-Y)(\omega)=X(\omega)-Y(\omega)$: how much taller Jo is than Ed

- Let X and Y be random variables.
- Then we also can consider random variables:
- $(X+Y)(\omega)=X(\omega)+Y(\omega)$
- $(X \cdot Y)(\omega)=X(\omega) \cdot Y(\omega)$
- $(-X)(\omega)=-(X(\omega))$
- $(\lambda X)(\omega)=\lambda(X(\omega)), \lambda \in \mathbb{R}$

Example: Roll of an Eight-sided and a Six-sided Die

- $\Omega=\{\langle i$ on top, j on top $\rangle: 1 \leqslant i \leqslant 8,1 \leqslant j \leqslant 6\}$
- $X(\langle i$ on top,j on top $\rangle)=i$: Result of the eight-sided die.
- $Y(\langle i$ on top,j on top $\rangle)=j$: Result of the six-sided die.
- $\max \{X, Y\}(\omega)=\max \{X(\omega), Y(\omega)\}$: The maximum score.
- $(X+Y)(\omega)=X(\omega)+Y(\omega)$: The total score.
- $\{X+Y=3\}=\{\omega: X(\omega)+Y(\omega)=3\}=$ $\{\langle 1$ on top, 2 on top $\rangle,\langle 2$ on top, 1 on top $\rangle\}$

Expectation Value of a Discrete Random Variable

 Probability of X having value r :$$
P(\{X=r\})=P(\{\omega: X(\omega)=r\})
$$

Expected value of X :

$$
E[X]=\sum_{r} r \cdot P(\{X=r\})=\sum_{r} r \cdot P(\{\omega: X(\omega)=r\})
$$

Example: Roll of a fair die.

- $\Omega=\{1$ on top, 2 on top, $\ldots, 6$ on top $\}$
- $X(\{1$ on top $\})=1, \ldots, X(\{6$ on top $\})=6$
- $P(1):=P(\{X=1\})=P(\{1$ on top $\})=\frac{1}{6}, \ldots$
$P(6):=P(\{X=6\})=P(\{6$ on top $\})=\frac{1}{6}$

$$
E[X]=\sum_{i=1}^{6} i . P(\{X=i\})=1 \cdot \frac{1}{6}+\cdots+6 \cdot \frac{1}{6}=3.5
$$

Expectation Values of Functions of Random Variables

A: random variable
U : function on the real numbers
$U \circ A: U \circ A(\omega)=U(A(\omega))$

$U \circ A$ is a random variable.
(*) The law of total probability: $P(C)=\sum_{o} P\left(C \mid D_{o}\right) \cdot P\left(D_{o}\right)$.
$(* *) P(\{U \circ A=x\} \mid\{A=o\})=1$ iff $x=U(o)$ and 0 otherwise.

$$
\begin{aligned}
E(U \circ A) & =\sum_{x} x \cdot P(\{U \circ A=x\}) \\
& \stackrel{(*)}{=} \sum_{o} \sum_{x} x \cdot P(\{U \circ A=x\} \mid\{A=o\}) P(\{A=o\}) \\
& \stackrel{(* *)}{=} \sum_{o} U(o) \cdot P(\{A=o\})
\end{aligned}
$$

Independent, Identically Distributed Random Variables

Can we determine probabilities from frequencies?
A sequence X_{1}, X_{2}, \ldots of random variables is independent and identically distributed (i. i. d.) if and only if

- X_{i} is probabilistically independent from X_{j} for $i \neq j$,
- i. e. for all $\left(r_{1}, r_{2}\right),\left(r_{3}, r_{4}\right) \subseteq \mathbb{R}$,

$$
P\left(\left\{X_{i} \in\left(r_{1}, r_{2}\right)\right\} \mid\left\{X_{j} \in\left(r_{3}, r_{4}\right)\right\}\right)=P\left(\left\{X_{i} \in\left(r_{1}, r_{2}\right)\right\}\right) \text {, and }
$$

- the probability distribution for X_{i} is identical to that of X_{j},
- i. e. for all $\left(r_{1}, r_{2}\right) \subseteq \mathbb{R}, P\left(\left\{X_{i} \in\left(r_{1}, r_{2}\right)\right\}\right)=P\left(\left\{X_{j} \in\left(r_{1}, r_{2}\right)\right\}\right)$.

For example a repeated sequence of coin tosses
Sample mean of the initial sequence of a sequence of i.i.d. variables:

$$
\bar{X}_{n}:=\frac{x_{1}+X_{2}+\ldots X_{n}}{n}
$$

Laws of Large Numbers

Expectation value (real mean, population mean) of the i.i.d.: $\mu=E\left[X_{1}\right]=E\left[X_{2}\right]=E\left[X_{3}\right]=\ldots$

- Strong law of large numbers (for finite variance):

$$
P\left(\left\{\lim _{n \rightarrow \infty} \bar{X}_{n}=\mu\right\}\right)=1
$$

"The probability of getting to the real mean through infinitely many observations is 1 ."

- Weak law of large numbers:

$$
\text { For all } \varepsilon>0, \quad \lim _{n \rightarrow \infty} P\left(\left\{\left|\bar{X}_{n}-\mu\right| \leqslant \varepsilon\right\}\right)=1
$$

"For any ε, you can improve your chance of getting that close to the real mean through measurement arbitrarily by further observations."

