Summer School on Mathematical Philosophy for Female Students

Introduction to Probability Theory, Algebra, and Set Theory

Catrin Campbell-Moore and Sebastian Lutz

Munich Center for Mathematical Philosophy

July 28, 2014

exander von Humboldt Stiftung/Foundation

Probability 0000 0000 Random Variables 00000000

Outline

Events as Sets of States Set Theory in Pictures Events

Probability

Basic Concepts of Probability Conditional Probabilities

Random Variables

Probability 0000 0000 Random Variables

Outline

Events as Sets of States Set Theory in Pictures Events

Probability

Basic Concepts of Probability Conditional Probabilities

Random Variables

Probability 0000 Random Variables

Venn Diagrams

Probability 0000 0000 Random Variables

Operations on Sets: Union and Intersection

Probability 0000 0000 Random Variables

Operations on Sets: Subtraction and Complement

Probability 0000 Random Variables

Relations Between Sets

Probabilit 0000 0000 Random Variables

Inferences With Venn Diagrams

Probability 0000 0000 Random Variables

Partitions

 B_1, B_2, \ldots, B_k is a *partition* of Ω if and only if

 $B_1 \cup B_2 \cup \cdots \cup B_k = \Omega$ and $B_i \cap B_j = \emptyset$ for $i \neq j$.

If B_1, B_2, \ldots, B_k is a partition, then for every A,

- $(A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cup B_k) = A.$
- $(A \cap B_i) \cap (A \cap B_j) = \emptyset$ for $i \neq j$.
- \Rightarrow A partition of Ω partitions every subset of Ω .

Probability 0000 0000 Random Variables

The Set of All States

- A state: A way in which the world could be.
- We call the set of all possible states Ω .
- Examples for Ω:
 - The set of possible entire past, present and futures of the universe.
 - {heads, tails}
 - $\{egg rotten, egg good\}$
 - {egg good and Jo hungry, egg good and Jo not hungry, egg rotten and Jo hungry, egg rotten and Jo not hungry}
 - {Jo has height $rm : r \in \mathbb{R}^+$ }
 - {The center of the vase is at x : x is a point on the tabletop}
 - The set of infinite sequences of tosses of a coin.
 - The set of models of a language L

Events as Sets of States: Basic Idea

Roughly, subsets of Ω are called *events*.

- $\Omega = \{ \langle H, H \rangle, \langle H, T \rangle, \langle T, H \rangle, \langle T, T \rangle \}$
- The proposition A = "The first coin lands heads" describes the event A = {⟨H, H⟩, ⟨H, T⟩}
- The proposition $\mathbf{B} =$ "At least one coin lands heads", describes the *event* $B = \{\langle H, H \rangle, \langle H, T \rangle, \langle T, H \rangle\}$
- $\Omega = \{ \mathsf{Jo has height } r\mathrm{m} : r \in \mathbb{R} \}$
- Is Jo taller than 2m?
- Events of interest:

{Jo has height $rm : r \leq 2$ } and {Jo has height rm : r > 2}

Events as Sets of States: Formalism

 $\Omega = \{$ Jo has height rm and Ed has height $tm : r, t \in \mathbb{R}\}$ Suppose I'm interested in

- A: Jo is taller than 2m
- B: Ed is taller than Jo

We will also then be interested in events which can be formed from combining A and B, e.g.

- $A \cap B$: Jo is taller than 2m and Ed is taller than Jo
- A^c: Jo is not taller than 2m

We call the set of the events that we're interested in \mathcal{F} .

We assume that \mathcal{F} is a *Boolean algebra*, i.e.

- $\emptyset \in \mathcal{F}$ and $\Omega \in \mathcal{F}$.
- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$.

Probability 0000 0000 Random Variables

Boolean Algebra

A Boolean algebra which contains A and B will also contain all the subsets which you can draw lines around.

The Boolean algebra generated by A_1, \ldots, A_n is just the smallest Boolean algebra containing all of A_1 to A_n .

Events as Sets of States: Some More For example $\Omega = \{\langle H, H \rangle, \langle H, T \rangle, \langle T, H \rangle, \langle T, T \rangle\}$, the following are Boolean algebras over Ω

- $\{\varnothing, \Omega\}$
- { \emptyset , { $\langle H, H \rangle$, $\langle H, T \rangle$ }, { $\langle T, H \rangle$, $\langle T, T \rangle$ }, Ω }
- *P*(Ω)

Consequences of the formalism:

- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \setminus B \in \mathcal{F}$.

Sometimes it is asked that the event space is a σ -algebras:

- $\emptyset \in \mathcal{F}$ and $\Omega \in \mathcal{F}$.
- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$.
- If $A_1, A_2, A_3, \ldots \in \mathcal{F}$ then $A_1 \cup A_2 \cup A_3 \cup \ldots \in \mathcal{F}$.

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 11 / 28

Probability 0000 0000 Random Variables

Atoms in a Boolean algebra

A is an *atom* of a Boolean algebra \mathcal{F} if there is no $B \in \mathcal{F}$ with $\emptyset \subset B \subset A$.

- If \mathcal{F} is finite we can always partition Ω into atoms like this.
- All other events in $\mathcal F$ are unions of the atoms.
- Note: Atoms can be *sets* of states.
- Note: The atoms form a partition of \mathcal{F} .

Probability

Random Variables

Outline

Events as Sets of States Set Theory in Pictures Events

Probability Basic Concepts of Probability Conditional Probabilities

Random Variables

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 12 / 28

What is Probability?

- $P: \mathcal{F} \to \mathbb{R}$
- How likely the event is to happen.
- We can think of this by taking the size of the areas in the diagrams into account.
- We stipulate that the size of the diagram is 1.
- P(A) measures the area A.

Probability

Random Variables

Just Look at the Atoms

We want to calculate the size of each of $A \in \mathcal{F}$.

- To do this we can just look at the size of the atoms.
- Since the atoms partion Ω , $\sum_{A \text{ is an atom}} P(A) = 1$.

This allows us to work out the other probabilities of $B \in \mathcal{F}$:

 $P(D) = \sum_{C \text{ is an atom and } C \subseteq D} P(C) \qquad (\text{Note:} \sum_{\varnothing} P(C) = 0)$ $P(A) = P(A \cap B) + P(A \cap B^c) = 0.4 + 0.3 = 0.7$

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 14 / 28

Probability

Random Variables

The Axiomatic Approach

In general we might not have atoms so we give axioms that don't presuppose atoms.

When we have infinite spaces and a σ -algebra we sometimes add:

 σ-Additivity: If each A_i ∈ F and A_i ∩ A_j = Ø for all i ≠ j then P(∪_{i=1}[∞] A_i) = ∑_{i=1}[∞] P(A_i)

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 15 / 28

Probability

Random Variables

Consequences of the Axioms

These can also be derived from the axioms.

• $A \cap A^c = \varnothing$ so $1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c)$

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 16 / 28

Probability

Random Variables

Conditional Probabilities

- P(A|B): "The probability of A given B"
- Remove the area outside *B*, pretend that *B* has size 1.

• This should satisfy the ratio formula:

If
$$P(B) > 0$$
 then $P(A|B) = \frac{P(A \cap B)}{P(B)}$

• The ratio formula can be read as a definition or as a restriction.

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 17 / 28

Probabilistic Independence

A is probabilistically independent from B if and only if P(A|B) = P(A).

Equivalently: $P(A \cap B) = P(A) \cdot P(B)$

• because $P(A \cap B) = \frac{P(A \cap B)}{P(B)}P(B) = P(A|B) \cdot P(B) = P(A) \cdot P(B)$

If A and B are independent then from knowing P(A) and P(B) one can find the probabilities of all the events in the Boolean algebra generated by A and B.

Probability

Random Variables

Law of total probability

The *law of total probability* says that if B_1, \ldots, B_k is a partition of Ω then

$$P(A) = \sum_{i=1}^{k} P(A|B_i) \cdot P(B_i)$$

Probability

Bayes' Theorem

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(B \cap A) \cdot P(B)}{P(A) \cdot P(B)} = \frac{P(A|B) \cdot P(B)}{P(A)}$$

Use the law of total probability: If B_1, \ldots, B_k is a partition of Ω , then

$$P(B_m|A) = \frac{P(A|B_m) \cdot P(B_m)}{\sum_{i=1}^k P(A|B_i) \cdot P(B_i)}$$

Example:

- Jo knows that she has one of three biased coins: $P(\text{Head}|B_1) = 0.6, P(\text{Head}|B_2) = 0.7, P(\text{Head}|B_3) = 0.6.$
- $P(B_1) = 0.5$, $P(B_2) = 0.3$, $P(B_3) = 0.2$

Then

$$P(B_2|\mathsf{Head}) = \frac{0.7 \times 0.3}{0.6 \times 0.5 + 0.7 \times 0.3 + 0.6 \times 0.2} = \frac{0.21}{0.63} = \frac{1}{3}$$

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 20 / 28

Probability 0000 0000 Random Variables

Outline

Events as Sets of States Set Theory in Pictures Events

Probability

Basic Concepts of Probability Conditional Probabilities

Random Variables

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 20 / 28

Probability 0000 0000 Random Variables

What is a Random Variable?

A random variable is a function from Ω to \mathbb{R} ,

such that

$$\{\omega: X(\omega) \leq r\} \in \mathcal{F} ext{ for all } r \in \mathbb{R}$$

•
$$\{\omega : X(\omega) \le r\} =: \{X \le r\}$$

•
$$\{\omega : X(\omega) = r\} =: \{X = r\}$$
 etc.

• Note: Random variables are neither variables nor random.

Catrin Campbell-Moore and Sebastian Lutz

.

Examples

- The outcome of a roll of a die.
- $\Omega = \{1 \text{ on top}, 2 \text{ on top}, \dots, 6 \text{ on top}\}$
- X({1 on top}) = 1,...,X({6 on top}) = 6
- $\Omega = \{ \mathsf{Jo} \text{ has height } r \mathrm{m} \text{ and Ed has height } t \mathrm{m} : r, t \in \mathbb{R} \}$
- $X(\omega) =$ Jo's height
- $Y(\omega) = \mathsf{Ed's}$ height
- Ω =

The set of entire past, present and futures of the universe

- $X(\omega) =$ how rich I am at time t_0 in ω , measured in Euro
- $\Omega = \{ \text{it rains today, it does not rain today} \}$
- $X(\omega) =$ how happy I am if I take my umbrella today

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 22 / 28

Algebraic Operations on Random Variables

$$\Omega = \{$$
Jo has height rm and Ed has height $tm : r, t \in \mathbb{R}\}$
 $X(\omega) =$ Jo's height
 $Y(\omega) =$ Ed's height
 $(X - Y)(\omega) = X(\omega) - Y(\omega)$: how much taller Jo is than Ed

- Let X and Y be random variables.
- Then we also can consider random variables:

•
$$(X + Y)(\omega) = X(\omega) + Y(\omega)$$

•
$$(X \cdot Y)(\omega) = X(\omega) \cdot Y(\omega)$$

•
$$(-X)(\omega) = -(X(\omega))$$

•
$$(\lambda X)(\omega) = \lambda(X(\omega)), \lambda \in \mathbb{R}$$

Example: Roll of an Eight-sided and a Six-sided Die

- $\Omega = \{ \langle i \text{ on top}, j \text{ on top} \rangle : 1 \leqslant i \leqslant 8, 1 \leqslant j \leqslant 6 \}$
- $X(\langle i \text{ on top}, j \text{ on top} \rangle) = i$: Result of the eight-sided die.
- $Y(\langle i \text{ on top}, j \text{ on top} \rangle) = j$: Result of the six-sided die.
- $\max{X, Y}(\omega) = \max{X(\omega), Y(\omega)}$: The maximum score.
- $(X + Y)(\omega) = X(\omega) + Y(\omega)$: The total score.
- $\{X + Y = 3\} = \{\omega : X(\omega) + Y(\omega) = 3\} = \{\langle 1 \text{ on top}, 2 \text{ on top} \rangle, \langle 2 \text{ on top}, 1 \text{ on top} \rangle \}$

Expectation Value of a Discrete Random Variable Probability of X having value r:

$$P(\{X=r\}) = P(\{\omega : X(\omega) = r\})$$

Expected value of X:

$$E[X] = \sum_{r} r.P(\{X = r\}) = \sum_{r} r.P(\{\omega : X(\omega) = r\})$$

Example: Roll of a fair die.

•
$$\Omega = \{1 \text{ on top}, 2 \text{ on top}, \dots, 6 \text{ on top}\}$$

• $X(\{1 \text{ on top}\}) = 1, \dots, X(\{6 \text{ on top}\}) = 6$
• $P(1) := P(\{X = 1\}) = P(\{1 \text{ on top}\}) = \frac{1}{6}, \dots$
 $P(6) := P(\{X = 6\}) = P(\{6 \text{ on top}\}) = \frac{1}{6}$

$$E[X] = \sum_{i=1}^{6} i.P(\{X=i\}) = 1.\frac{1}{6} + \dots + 6.\frac{1}{6} = 3.5$$

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 25 / 28

Probabilit 0000 0000 Random Variables

Expectation Values of Functions of Random Variables

- A: random variable
- U: function on the real numbers

 $U \circ A$: $U \circ A(\omega) = U(A(\omega))$ $U \circ A$ is a random variable.

(*) The law of total probability: $P(C) = \sum_{o} P(C|D_o) \cdot P(D_o)$. (**) $P(\{U \circ A = x\} | \{A = o\}) = 1$ iff x = U(o) and 0 otherwise.

$$E(U \circ A) = \sum_{x} x.P(\{U \circ A = x\})$$

$$\stackrel{(*)}{=} \sum_{o} \sum_{x} x.P(\{U \circ A = x\} | \{A = o\})P(\{A = o\})$$

$$\stackrel{(**)}{=} \sum_{o} U(o) \cdot P(\{A = o\})$$

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 26 / 28

Independent, Identically Distributed Random Variables

Can we determine probabilities from frequencies?

A sequence X_1, X_2, \ldots of random variables is independent and identically distributed (i. i. d.) if and only if

- X_i is probabilistically independent from X_j for $i \neq j$,
 - i. e. for all $(r_1, r_2), (r_3, r_4) \subseteq \mathbb{R}$, $P(\{X_i \in (r_1, r_2)\} | \{X_j \in (r_3, r_4)\}) = P(\{X_i \in (r_1, r_2)\})$, and
- the probability distribution for X_i is identical to that of X_j,
 - i.e. for all $(r_1, r_2) \subseteq \mathbb{R}, P(\{X_i \in (r_1, r_2)\}) = P(\{X_j \in (r_1, r_2)\}).$

For example a repeated sequence of coin tosses

Sample mean of the initial sequence of a sequence of i. i. d. variables:

$$\overline{X}_n := \frac{X_1 + X_2 + \dots + X_n}{n}$$

Catrin Campbell-Moore and Sebastian Lutz

Introduction to Probability Theory, Algebra, Set Theory 27 / 28

Laws of Large Numbers

Expectation value (real mean, population mean) of the i. i. d.: $\mu = E[X_1] = E[X_2] = E[X_3] = \dots$

• Strong law of large numbers (for finite variance):

$$P(\{\lim_{n\to\infty}\overline{X}_n=\mu\})=1$$

"The probability of getting to the real mean through infinitely many observations is 1."

• Weak law of large numbers:

For all
$$arepsilon > 0$$
, $\lim_{n o \infty} P(\{|\overline{X}_n - \mu| \leqslant arepsilon\}) = 1$

"For any ε , you can improve your chance of getting that close to the real mean through measurement arbitrarily by further observations."