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Venn Diagrams

The domain, Ω, A subset of
is a set the domain

Example: {ω1, ω2, ω3} {ω2, ω3}

ω3
ω2

ω1

ω3
ω2

ω1

Catrin Campbell-Moore and Sebastian Lutz Introduction to Probability Theory, Algebra, Set Theory 1 / 28



Events as Sets of States Probability Random Variables

Operations on Sets: Union and Intersection

Union A ∪ B Intersection A ∩ B

{ω1, ω2} ∪ {ω2, ω3} = {ω1, ω2, ω3} {ω1, ω2} ∩ {ω2, ω3} = {ω2}

A

B

A

B

Disjunction A ∨ B Conjunction A ∧ B
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Operations on Sets: Subtraction and Complement

Subtraction A\B Complement Ac = Ω\A
{ω1, ω2}\{ω2, ω3} = {ω1} {ω1, ω2}c = {ω3}

A

B

A A

A ∧ ¬B Negation ¬A
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Relations Between Sets

A ⊆ B A ∩ B = ∅ A ∩ B 6= ∅

{ω1} ⊆ {ω1, ω2} {ω1, ω2} ∩ {ω3} = ∅ {ω1, ω2} ∩ {ω2} = {ω2}

A

B

A

B

A

B

A→ B A ∧ B→ ⊥ ¬(A ∧ B→ ⊥)
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Inferences With Venn Diagrams

(Ac)c = A A ∩ (B ∪ C ) = A\B = A ∩ Bc

(A ∩ B) ∪ (A ∩ C )

A A

B C

A

B

A

¬¬A↔ A A ∧ (B ∨ C) A ∧ ¬B
↔ (A ∧ B) ∨ (A ∧ C)
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Partitions
B1,B2, . . . ,Bk is a partition of Ω if and only if

B1 ∪ B2 ∪ · · · ∪ Bk = Ω and Bi ∩ Bj = ∅ for i 6= j .

A

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

If B1,B2, . . . ,Bk is a partition, then for every A,

• (A ∩ B1) ∪ (A ∩ B2) ∪ · · · ∪ (A ∪ Bk) = A.

• (A ∩ Bi ) ∩ (A ∩ Bj) = ∅ for i 6= j .

⇒ A partition of Ω partitions every subset of Ω.
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The Set of All States

• A state: A way in which the world could be.

• We call the set of all possible states Ω.

• Examples for Ω:
• The set of possible entire past, present and futures of the

universe.
• {heads, tails}
• {egg rotten, egg good}
• {egg good and Jo hungry, egg good and Jo not hungry,

egg rotten and Jo hungry, egg rotten and Jo not hungry}
• {Jo has height rm : r ∈ R+}
• {The center of the vase is at x : x is a point on the tabletop}
• The set of infinite sequences of tosses of a coin.
• The set of models of a language L
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Events as Sets of States: Basic Idea

Roughly, subsets of Ω are called events.

• Ω = {〈H,H〉, 〈H,T 〉, 〈T ,H〉, 〈T ,T 〉}
• The proposition A = “The first coin lands heads” describes

the event A = {〈H,H〉, 〈H,T 〉}
• The proposition B = “At least one coin lands heads”,

describes the event B = {〈H,H〉, 〈H,T 〉, 〈T ,H〉}

• Ω = {Jo has height rm : r ∈ R}
• Is Jo taller than 2m?

• Events of interest:
{Jo has height rm : r 6 2} and {Jo has height rm : r > 2}
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Events as Sets of States: Formalism
Ω = {Jo has height rm and Ed has height tm : r , t ∈ R}
Suppose I’m interested in

• A: Jo is taller than 2m

• B: Ed is taller than Jo

We will also then be interested in events which can be formed from
combining A and B, e.g.

• A ∩ B: Jo is taller than 2m and Ed is taller than Jo

• Ac : Jo is not taller than 2m

We call the set of the events that we’re interested in F .

We assume that F is a Boolean algebra, i.e.

• ∅ ∈ F and Ω ∈ F .

• If A ∈ F then Ac ∈ F .

• If A,B ∈ F then A ∪ B ∈ F .
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Boolean Algebra

A Boolean algebra which contains A and B will also contain all the
subsets which you can draw lines around.

A

B

The Boolean algebra generated by A1, . . . ,An is just the smallest
Boolean algebra containing all of A1 to An.
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Events as Sets of States: Some More
For example Ω = {〈H,H〉, 〈H,T 〉, 〈T ,H〉, 〈T ,T 〉}, the following
are Boolean algebras over Ω

• {∅,Ω}
• {∅, {〈H,H〉, 〈H,T 〉}, {〈T ,H〉, 〈T ,T 〉},Ω}
• P(Ω)

Consequences of the formalism:

• If A,B ∈ F then A ∩ B ∈ F .

• If A,B ∈ F then A\B ∈ F .

Sometimes it is asked that the event space is a σ-algebras:

• ∅ ∈ F and Ω ∈ F .

• If A ∈ F then Ac ∈ F .

• If A1,A2,A3, . . . ∈ F then A1 ∪ A2 ∪ A3 ∪ . . . ∈ F .
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Atoms in a Boolean algebra
A is an atom of a Boolean algebra F if there is no B ∈ F with
∅ ⊂ B ⊂ A.

A∩B

A∩Bc

Ac∩B

Ac∩Bc

• If F is finite we can always partition Ω into atoms like this.
• All other events in F are unions of the atoms.
• Note: Atoms can be sets of states.
• Note: The atoms form a partition of F .
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What is Probability?

• P : F → R
• How likely the event is to happen.

• We can think of this by taking the size of the areas in the
diagrams into account.

• We stipulate that the size of the diagram is 1.

• P(A) measures the area A.

A
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Just Look at the Atoms
We want to calculate the size of each of A ∈ F .

• To do this we can just look at the size of the atoms.

• Since the atoms partion Ω,
∑

A is an atom P(A) = 1.

Atom C P(C )
A ∩ B 0.4
A ∩ Bc 0.3
Ac ∩ B 0.2
Ac ∩ Bc 0.1

A

B

0.40.3

0.20.1

This allows us to work out the other probabilities of B ∈ F :

P(D) =
∑

C is an atom and C⊆D P(C ) (Note:
∑

∅ P(C ) = 0)

P(A) = P(A ∩ B) + P(A ∩ Bc) = 0.4 + 0.3 = 0.7

Catrin Campbell-Moore and Sebastian Lutz Introduction to Probability Theory, Algebra, Set Theory 14 / 28



Events as Sets of States Probability Random Variables

The Axiomatic Approach
In general we might not have atoms so we give axioms that don’t
presuppose atoms.

P : F → R satisfying:
Finite Additivity:

Normalisation: Positivity: If A ∩ B = ∅ then
P(Ω) = 1 P(A) > 0 P(A ∪ B) = P(A) + P(B)

A
A

B

When we have infinite spaces and a σ-algebra we sometimes add:

• σ-Additivity: If each Ai ∈ F and Ai ∩ Aj = ∅ for all i 6= j
then P(

⋃∞
i=1 Ai ) =

∑∞
i=1 P(Ai )
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Consequences of the Axioms

P(Ac) = 1− P(A) If A ⊆ B P(A ∪ B) + P(A ∩ B)

then P(A) 6 P(B) = P(A) + P(B)

A

A

B

These can also be derived from the axioms.

• A ∩ Ac = ∅ so 1 = P(Ω) = P(A ∪ Ac) = P(A) + P(Ac)
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Conditional Probabilities
• P(A|B): “The probability of A given B”
• Remove the area outside B, pretend that B has size 1.

A

B ;;; B

• This should satisfy the ratio formula:

If P(B) > 0 then P(A|B) =
P(A ∩ B)

P(B)

• The ratio formula can be read as a definition or as a
restriction.
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Probabilistic Independence

A is probabilistically independent from B if and only if
P(A|B) = P(A).

Equivalently: P(A ∩ B) = P(A) · P(B)

• because
P(A ∩ B) = P(A∩B)

P(B) P(B) = P(A|B) · P(B) = P(A) · P(B)

If A and B are independent then from knowing P(A) and P(B)
one can find the probabilities of all the events in the Boolean
algebra generated by A and B.
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Law of total probability

The law of total probability says that if B1, . . . ,Bk is a partition of
Ω then

P(A) =
k∑

i=1

P(A|Bi ) · P(Bi )

A

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
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Bayes’ Theorem

P(B|A) =
P(B ∩ A)

P(A)
=

P(B ∩ A) · P(B)

P(A) · P(B)
=

P(A|B) · P(B)

P(A)

Use the law of total probability: If B1, . . . ,Bk is a partition of Ω,
then

P(Bm|A) =
P(A|Bm) · P(Bm)∑k
i=1 P(A|Bi ) · P(Bi )

Example:
• Jo knows that she has one of three biased coins:
P(Head|B1) = 0.6, P(Head|B2) = 0.7, P(Head|B3) = 0.6.

• P(B1) = 0.5, P(B2) = 0.3, P(B3) = 0.2

Then

P(B2|Head) =
0.7× 0.3

0.6× 0.5 + 0.7× 0.3 + 0.6× 0.2
=

0.21

0.63
=

1

3

Catrin Campbell-Moore and Sebastian Lutz Introduction to Probability Theory, Algebra, Set Theory 20 / 28



Events as Sets of States Probability Random Variables

Outline

Events as Sets of States
Set Theory in Pictures
Events

Probability
Basic Concepts of Probability
Conditional Probabilities

Random Variables

Catrin Campbell-Moore and Sebastian Lutz Introduction to Probability Theory, Algebra, Set Theory 20 / 28



Events as Sets of States Probability Random Variables

What is a Random Variable?

A random variable is a function from Ω to R,

X : Ω→ R
ω 7→ X (ω)

such that
{ω : X (ω) ≤ r} ∈ F for all r ∈ R .

• {ω : X (ω) ≤ r} =: {X ≤ r}
• {ω : X (ω) = r} =: {X = r} etc.

• Note: Random variables are neither variables nor random.
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Examples

• The outcome of a roll of a die.

• Ω = {1 on top, 2 on top, . . . , 6 on top}
• X ({1 on top}) = 1, . . . ,X ({6 on top}) = 6

• Ω = {Jo has height rm and Ed has height tm : r , t ∈ R}
• X (ω) = Jo’s height

• Y (ω) = Ed’s height

• Ω =
The set of entire past, present and futures of the universe

• X (ω) = how rich I am at time t0 in ω, measured in Euro

• Ω = {it rains today, it does not rain today}
• X (ω) = how happy I am if I take my umbrella today
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Algebraic Operations on Random Variables

Ω = {Jo has height rm and Ed has height tm : r , t ∈ R}
X (ω) = Jo’s height
Y (ω) = Ed’s height
(X − Y )(ω) = X (ω)− Y (ω): how much taller Jo is than Ed

• Let X and Y be random variables.

• Then we also can consider random variables:
• (X + Y )(ω) = X (ω) + Y (ω)
• (X · Y )(ω) = X (ω) · Y (ω)
• (−X )(ω) = −(X (ω))
• (λX )(ω) = λ(X (ω)), λ ∈ R
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Example: Roll of an Eight-sided and a Six-sided Die

• Ω = {〈i on top, j on top〉 : 1 6 i 6 8, 1 6 j 6 6}
• X (〈i on top, j on top〉) = i : Result of the eight-sided die.

• Y (〈i on top, j on top〉) = j : Result of the six-sided die.

• max{X ,Y }(ω) = max{X (ω),Y (ω)} : The maximum score.

• (X + Y )(ω) = X (ω) + Y (ω) : The total score.

• {X + Y = 3} = {ω : X (ω) + Y (ω) = 3} =
{〈1 on top, 2 on top〉, 〈2 on top, 1 on top〉}
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Expectation Value of a Discrete Random Variable
Probability of X having value r :

P({X = r}) = P({ω : X (ω) = r})

Expected value of X :

E [X ] =
∑
r

r .P({X = r}) =
∑
r

r .P({ω : X (ω) = r})

Example: Roll of a fair die.
• Ω = {1 on top, 2 on top, . . . , 6 on top}
• X ({1 on top}) = 1, . . . ,X ({6 on top}) = 6
• P(1) := P({X = 1}) = P({1 on top}) = 1

6 , . . .

P(6) := P({X = 6}) = P({6 on top}) = 1
6

E [X ] =
6∑

i=1

i .P({X = i}) = 1.
1

6
+ · · ·+ 6.

1

6
= 3.5
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Expectation Values of Functions of Random Variables

A: random variable
U: function on the real numbers

U ◦ A: U ◦ A(ω) = U(A(ω))
U ◦ A is a random variable.

Ω R R
A

U ◦ A

U

(∗) The law of total probability: P(C ) =
∑

o P(C |Do) · P(Do).
(∗∗) P({U ◦ A = x}|{A = o}) = 1 iff x = U(o) and 0 otherwise.

E (U ◦ A) =
∑
x

x .P({U ◦ A = x})

(∗)
=

∑
o

∑
x

x .P({U ◦ A = x}|{A = o})P({A = o})

(∗∗)
=

∑
o

U(o) · P({A = o})
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Independent, Identically Distributed Random Variables

Can we determine probabilities from frequencies?

A sequence X1,X2, . . . of random variables is independent and
identically distributed (i. i. d.) if and only if

• Xi is probabilistically independent from Xj for i 6= j ,
• i. e. for all (r1, r2), (r3, r4) ⊆ R,

P({Xi ∈ (r1, r2)}|{Xj ∈ (r3, r4)}) = P({Xi ∈ (r1, r2)}), and

• the probability distribution for Xi is identical to that of Xj ,
• i. e. for all (r1, r2) ⊆ R,P({Xi ∈ (r1, r2)}) = P({Xj ∈ (r1, r2)}).

For example a repeated sequence of coin tosses

Sample mean of the initial sequence of a sequence of i. i. d.
variables:

X n :=
X1 + X2 + . . .Xn

n
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Laws of Large Numbers

Expectation value (real mean, population mean) of the i. i. d.:
µ = E [X1] = E [X2] = E [X3] = . . .

• Strong law of large numbers (for finite variance):

P({ lim
n→∞

X n = µ}) = 1

“The probability of getting to the real mean through infinitely
many observations is 1.”

• Weak law of large numbers:

For all ε > 0, lim
n→∞

P({|X n − µ| 6 ε}) = 1

“For any ε, you can improve your chance of getting that close to
the real mean through measurement arbitrarily by further
observations.”
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