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Question 1. Draw Venn diagrams for the following sets and write them in a
simpler way:

• A ∩ (B ∪A)

• A \ (B ∩ (A ∪ C))

Answer. I’ll omit the Venn diagrams, but A∩(B∪A) = A and A\(B∩(A∪C)) =
A \B.

Question 2. Let Ω = {ω1, ω2, ω3} and F = P(Ω). Let P ({ω1}) = 0.1,
P ({ω2}) = 0.3 and P ({ω3}) = 0.6. Find the probabilities for all the other
events in F .

Answer. Since {a}, {b}, and {c} are the atoms of the Boolean algebra, their
probabilities give all the other events’ probabilities simply by summation.

P (∅) = 0

P ({a, b}) = P ({a}) + P ({b}) = 0.1 + 0.3 = 0.4

P ({a, c}) = P ({a}) + P ({c}) = 0.7

P ({b, c}) = P ({b}) + P ({c}) = 0.9

P ({a, b, c}) = P (Ω) = 1

Question 3. Two fair, independent, four-sided dice, one red and one green, are
rolled. Let the event A be “The sum of the faces showing is an even number.”
Define an appropriate Ω, list the states in A and say what P (A) is.

Answer. Let p〈i, j〉q stand for pThe red die shows i and the green die shows j.q.
Then set of states is Ω = {〈i, j〉 : 1 6 i, j 6 4} and the atoms of the algebra
of events are the singleton sets of Ω. Since the dice fair and their results in-
dependent, each atom has the same probability, namely 1

4·4 = 1
16 . The event

described by A is {〈i, j〉 : i + j ∈ {2, 4, 6, 8}}. The probability of this event is
given by the sum of the probabilities of the atoms whose union is the event. I
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bet there are combinatorical formulas to find out how many states there are in
the event, but I don’t know them. So I will write out all the states:

{〈i, j〉 : i + j ∈ {2, 4, 6, 8}} = {〈1, 1〉
〈1, 3〉, 〈2, 2〉, 〈3, 1〉
〈2, 4〉, 〈3, 3〉, 〈4, 2〉
〈4, 4〉}

There are thus 16 states, the singleton set of which make up an atom, each of
which has probability 1

16 . The probability of the event is thus 8
16 = 1

2 .

Question 4. Consider the following two events:

• A: It rains in Munich tomorrow

• B: The burglars who stole 300,000 litres of beer a few weeks ago will be
caught

Assume P (A) = 0.4, P (B) = 0.6 and that A and B are probabilistically inde-
pendent according to P .

Calculate:

1. P (Ac)

2. P (A ∩B)

3. P (A ∪B)

Answer.

P (Ac) = 1− P (A) = 0.6

P (A ∩B) = P (A) · P (B) = 0.24

P (A ∪B) = 1− P ((A ∪B)c = 1− P (Ac ∩Bc) = 1− P (Ac) · P (Bc)

= 1− (1− P (A)) · (1− P (B)) = 1− 0.6 · 0.4 = 0.24

The last calculation uses the fact that if two events are independent, so are
their complements: If P (A|B) = P (B), then P (A ∩ B) = P (A) · P (B) and

hence P (Ac|Bc) = P (Ac∩Bc)
P (Bc) = P (Ac)·P (Bc)

P (Bc) = P (Ac).

Question 5. Consider Ω = {ω1, ω2} and {ω1}, {ω2} ∈ F . Let P ({ω1}) = 0.2
and P ({ω2}) = 0.8. Calculate the expected values of the following variables.

ω1 ω2

P ({ω1}) = 0.2 P ({ω2}) = 0.8
X 5 5
Y 6 8
Z 1 10
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Answer.

E[X] =
∑

r∈range(X)

r · P{X = r} (1)

=
∑

r∈{5}

r · P{X = r} (2)

= 5 · P{ω1, ω2} (3)

= 5 · 1 (4)

= 5 (5)

E[Y ] =
∑

r∈range(Y )

r · P{X = r} (6)

=
∑

r∈{6,8}

r · P{X = r} (7)

= 6 · P{ω1}+ 8 · P{ω2} (8)

= 6 · 0.2 + 8 · 0.8 (9)

= 7.6 (10)

E[Z] =
∑

r∈range(Z)

r · P{X = r} (11)

=
∑

r∈{1,10}

r · P{X = r} (12)

= 1 · P{ω1}+ 10 · P{ω2} (13)

= 1 · 0.2 + 10 · 0.8 (14)

= 8.2 (15)

Question 6. For the roll of one four-sided and one six-sided die which are fair
and independent,

1. what is the probability of the total score being 3?

2. what is the expectation value of the total score?

3. what is the expectation value of the maximum score?

Answer. Similar to the answer to question 3, the set of states can be written as
Ω = {〈i, j〉 : 1 6 i 6 4 and 1 6 j 6 6}. Again, each singleton set of a state is
an event, and its probability is 1

4·6 = 1
24 .

The probability of the total score being 3 is the probability of the event
{〈i, j〉 : i+j = 3} = {〈1, 2〉, 〈2, 1〉}, and thus is P ({〈1, 2〉, 〈2, 1〉}) = P ({〈1, 2〉})+
P ({〈2, 1〉}) = 1

12 .
To determine the expected value of the total score, the previous calculation

3



has to be done for all the possible total scores:

Score 2: P ({〈1, 1〉}) =
1

16

Score 3: P ({〈1, 2〉, 〈2, 1〉}) =
2

16

Score 4: P ({〈1, 3〉, 〈2, 2〉, 〈3, 1〉}) =
3

16

Score 5: P ({〈1, 4〉, 〈2, 3〉, 〈3, 2〉, 〈4, 1〉}) =
4

16

Score 6: P ({〈1, 5〉, 〈2, 4〉, 〈3, 3〉, 〈4, 2〉, 〈5, 1〉}) =
5

16

Score 7: P ({〈1, 6〉, 〈2, 5〉, 〈3, 4〉, 〈4, 3〉}) =
4

16

Score 8: P ({〈2, 6〉, 〈3, 5〉, 〈4, 4〉}) =
3

16

Score 9: P ({〈3, 6〉, 〈4, 5〉}) =
2

16

Score 10: P ({〈4, 6〉}) =
1

16

The expectation value of the total score is then∑
s∈S

s · P ({〈i, j〉 : i + j = s}) =

2 · 1

16
+ 3 · 2

16
+ 4 · 3

16
+ 5 · 4

16
+ 6 · 5

16
+ 7 · 4

16
+ 8 · 3

16
+ 9 · 2

16
+ 10 · 1

16

=
2 + 6 + 12 + 20 + 30 + 28 + 24 + 18 + 10

16
=

75

8
, (16)

where S is the set of total scores.
The expectation value of the maximum score (where one just looks at the

die showing the highest value) is determined by the following probabilities:

Score 1: P ({〈1, 1〉}) =
1

16

Score 2: P ({〈1, 2〉, 〈2, 2〉, 〈2, 1〉}) =
3

16

Score 3: P ({〈1, 3〉, 〈2, 3〉, 〈3, 3〉, 〈3, 2〉, 〈3, 1〉}) =
5

16

Score 4: P ({〈1, 4〉, 〈2, 4〉, 〈3, 4〉, 〈4, 4〉〈4, 3〉, 〈4, 2〉, 〈4, 1〉}) =
7

16

Score 5: P ({〈1, 5〉, 〈2, 5〉, 〈3, 5〉, 〈4, 5〉}) =
4

16

Score 6: P ({〈1, 6〉, 〈2, 6〉, 〈3, 6〉, 〈4, 6〉}) =
4

16
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The expectation value of the maximum score is then∑
s∈S

s · P ({〈i, j〉 : max{i, j} = s}) =

1 · 1

16
+ 2 · 3

16
+ 3 · 5

16
+ 4 · 7

16
+ 5 · 4

16
+ 6 · 7

16
=

112

16
= 7 , (17)

Where S this time is the set of all maximum scores.

Question 7. Assume that for the role of a die, X({i on top}) = 2i and
Y ({i on top}) = i2. Assume X is applied to the outcomes of a roll of an
eight-sided die and Y is applied to the outcomes of a roll of a six-sided die.
What is the probability of X + Y = 6?

Answer. Similar to the answer to the previous question, the set of states can
be written as Ω = {〈i, j〉 : 1 6 i 6 8 and 1 6 j 6 6}. The probability we
are looking for is P ({X + Y = 6}) = P ({〈i, j〉 : X(〈i, j〉) + Y (〈i, j〉) = 6}) =
P ({〈i, j〉 : 1 6 i 6 8 and 1 6 j 6 6 and 2i + j2 = 6}) = P ({〈1, 2〉}) = 1

8·6 = 1
48 .

Question 8. Suppose there is a medical diagnostic test for a disease. The
sensitivity of the test is .95. This means that if a person has the disease, the
probability that the test gives a positive response is .95. The specificity of the
test is .90. This means that if a person does not have the disease, the probability
that the test gives a negative response is .90, or that the false positive rate of
the test is .10. In the population, 1% of the people have the disease. What is
the probability that a person tested has the disease, given the results of the test
is positive? Let D be the event that the person has the disease and T be the
event that the test gives a positive result.

Answer. We have the following information:

• P (T |D) = 0.95

• P (T c|Dc) = 0.9

• P (D) = 0.01

And we are asked to work out P (D|T ).
To do this we will use the (extended) Bayes theorem:

P (Bm|A) =
P (A|Bm) · P (Bm)∑k
i=1 P (A|Bi) · P (Bi)

P (D|T ) =
P (T |D) · P (D)

P (T |D) · P (D) + P (T |Dc) · P (Dc)

From the given information we can also calculate:

• P (Dc) = 1− 0.01 = 0.99

• P (T |Dc) = 1− P (T c|Dc) = 1− 0.9 = 0.1

5



The first follows from the rule: P (Ac) = 1 − P (A). The second was actually
given in the question, but it can be shown by proving that in general P (A|B) +
P (Ac|B) = 1. This can be done as follows: (A∩B) and (Ac ∩B) are disjoint so
P ((A∩B)∪ (Ac ∩B) = P (A∩B) +P (Ac ∩B), and (A∩B)∪ (Ac ∩B) = B, so

P (A|B) + P (Ac|B) =
P (A ∩B)

P (B)
+

P (Ac ∩B)

P (B)
(18)

=
P (A ∩B) + P (Ac ∩B)

P (B)
(19)

=
P ((A ∩B) ∪ (Ac ∩B))

P (B)
(20)

=
P (B)

P (B)
(21)

= 1 (22)

(23)

We can finally put these together:

P (D|T ) =
P (T |D) · P (D)

P (T |D) · P (D) + P (T |Dc) · P (Dc)
(24)

=
0.95 · 0.01

0.95 · 0.01 + 0.1 · 0.99
(25)

≈ 0.08756 < 10% (26)

Question 9 (Monty Hall). Suppose you are on a gameshow. There are three
doors: DA, DB and DC . Behind one of the doors there is an expensive sports
car, behind the other two there are goats, but you don’t know which. (You want
the sports car!). Monty Hall, the gameshow host, asks you to pick one of the
doors but not to open it yet. He will then pick one of the other two doors which
has a goat behind it and show you the goat. He then gives you the opportunity
to change your mind. Should you switch? Justify your answer using probability
theory. Note: If you are standing in front of the door with the car, Monty will
open one of the remaining doors at random.

Figure 1: xkcd
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Answer. At the beginning of the game the car could be behind any of the doors
DA, DB , DC with equal probabilities, that is, P (CA) = P (CB) = P (CC) = 1

3 ,
where pCXq stands for pThe car is behind door CXq. The letters labelling the
doors do not matter, so just assume you are standing in front of door DA and
Monty has opened door DB . Since behind DB there is a goat, you just need
to know the probability of the car being behind door DC given that Monty has
opened door DB (which I write as ‘OB ’). Thus you need to know P (CC |OB).
You only know the conditional probabilities in the other direction, though: You
know that Monty does not open the door behind you, nor the door with the
car. And you know that if you are standing in front of the car, he will open
one of the other doors randomly. You also know that the car is behind one of
the doors, that is, CA, CB , and CC are mutually exclusive and exhaustive, so
one can use the law of total probability. All of this can be plugged into Bayes’
theorem:

P (CC |OB) =
P (OB |CC)P (CC)

P (OB |CA)P (CA) + P (OB |CB)P (CB) + P (OB |CC)P (CC)

=
1 · 1

3
1
2 ·

1
3 + 0 · 1

3 + 1 · 1
3

=
2

3
(27)

You can play the game yourself and read a non-formal explanation of the
result at the New York Times’ website: http://www.nytimes.com/2008/04/

08/science/08monty.html.

Question 10. Show that a partition of Ω induces a partition on every element
of F . I.e. if B1, . . . , Bn partitions Ω then for every A ∈ F , (A∩B1), . . . , (A∩Bn)
partitions A.

Answer. For every i 6= j, (A ∩ Bi) ∩ (A ∩ Bj) = A ∩ (Bi ∩ Bj) = A ∩ ∅ = ∅.
Further it has to be shown that (A∩B1)∪ (A∩B2)∪· · ·∪ (A∩Bn) = A. This is
easier to show by working backwards and doing some monkey-business up front:
A = A∩Ω = A∩(B1∪B2∪· · ·∪Bn) = (A∩B1)∪

(
A∩(B2∪B2∪· · ·∪Bn)

)
= (A∩

B1)∪(A∩B2)∪
(
A∩(B3∪B4∪· · ·∪Bn)

)
= · · · = (A∩B2)∪(A∩B2)∪· · ·∪(A∩Bn).

Question 11. Show that the following follow from the formalism for events:

• If A,B ∈ F then A ∩B ∈ F .

• If A,B ∈ F then A\B ∈ F .

Answer. If A,B ∈ F , then Ac ∈ F and Bc ∈ F . Therefore Ac ∪ Bc ∈ F as
well, and also (Ac∪Bc)c ∈ F . Since (Ac∪Bc)c = A∩B, it therefore holds that
A ∩B ∈ F .

If A,B ∈ F then Bc ∈ F and hence, by the previous proof, A ∩ Bc ∈ F .
Since A ∩Bc = A\B, A\B ∈ F .

Question 12. Prove that the following follow from the axioms of probability:

1. P (∅) = 0

2. P (A ∪B) + P (A ∩B) = P (A) + P (B)

3. If C1, . . . , Ck is a partition of A then P (A) = P (C1) + . . . + P (Ck)1

1I have added this as an explicit part since I will use it as a lemma to prove the law of
total probability, and also for question 13 so I want to be able to refer back to it.
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4. The law of total probability.

Answer. 1)P (∅) = 0: Observe that ∅ ∩ Ω = ∅. Therefore by finite additivity,
P (∅ ∪ Ω) = P (∅) + P (Ω). We can see that ∅ ∪ Ω = Ω and therefore P (Ω) =
P (∅) + P (Ω). This directly shows that P (∅) = 0.

2)P (A∪B) +P (A∩B) = P (A) +P (B): A∩B and A∩Bc are disjoint and
their union is A, so by the law of finite additivity

P (A) = P (A ∩B) + P (A ∩Bc)

Also B and (A∩Bc) are disjoint and their union is A∪B, so by the law of finite
additivity

P (A ∪B) = P (B) + P (A ∩Bc)

Putting these together we get:

P (A ∪B) = P (B) + P (A)− P (A ∩B)

Which leads directly to the desired result.
3)Work by induction on k to show that if C1, . . . , Ck is a partition of A then

P (A) = P (C1) + . . . + P (Ck).
Base case: k = 1 is trivial since the only partition is C1 = A.
Induction step: suppose that for any k-sized partition, C ′1, . . . , C

′
k of A is such

that P (A) = P (C ′1)+. . .+P (C ′k). Consider the partition C1, . . . , Ck+1. Observe
that therefore C1, . . . , Ck−1, (Ck ∪ Ck+1) is a k-sized partition of A. Therefore
by the induction hypothesis we have that P (A) = P (C1) + . . . + P (Ck−1) +
P (Ck ∪Ck+1)). Ck and Ck+1 are disjoint so by the axiom of finite additivity we
have that P (Ck ∪ Ck+1) = P (Ck) + P (Ck+1). Plugging this into the previous
equation this suffices to show that P (A) = P (C1) + . . . + P (Ck) + P (Ck+1).

4) The law of total probability: Suppose that B1, . . . , Bk is a partition of Ω.
We need to show that

P (A) =

k∑
i=1

P (A|Bi) · P (Bi)

By question 10, (A ∩B1), . . . , (A ∩Bn) partitions A. Therefore by part 3,

P (A ∩B1) + P (A ∩B2) + . . . + P (A ∩Bk) = P (A)

. Then observe that if P (Bi) > 0 then P (A∩B) = P (A|Bi) ·P (Bi) by rearrang-
ing the ratio formula. If P (Bi) = 0 then by monotonicity also P (A∩B) = 0, so
we can without loss of generality assume that each Bi has P (Bi) > 0 (otherwise
delete the Bi). By substituting this into the equation we directly get the desired
result:

P (A) =

k∑
i=1

P (A ∩Bi) (28)

=

k∑
i=1

P (A|Bi) · P (Bi) (29)
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Question 13. 2Suppose that F is finite. Show that P satisfies the axioms of
probability if and only if there is a P− : {A|A is an atom of F} → R such that

• P−(A) > 0 for all atoms A

•
∑

A is an atom of F P−(A) = 1

with
P (B) =

∑
A is an atom and A⊆B

P−(A)

Hint: first show that if B ∈ F then

P (B) =
∑

A is an atom with A ⊆ B

P (A)

Answer. To give the answer to this question we first show that for any B ∈ F ,
the collection of atoms which are a subset of B are a partition of B.

Firstly, we show that the atoms are pairwise disjoint: Consider atoms A1 6=
A2. Since these are ∈ F , also A1 ∩ A2 ∈ F . A1 ∩ A2 ⊆ A1, so since A1 is an
atom, A1 ∩ A2 = ∅ or A1 ∩ A2 = A1. Since A2 is also an atom, A1 6⊂ A2, and
therefore A1 ∩A2 6= A1. This allows us to conclude that they must be disjoint.

Let B ∈ F , we show that ⋃
A is an atom with A⊆B

= B

Let ω ∈ B. Then ⋂
E∈F with ω ∈ E

E

is an atom of F containing ω. This shows that
⋃

A is an atom with A⊆B ⊇ B. For
each atom A ⊆ B, A ∩B = A since otherwise A would not be an atom. Then

B = B ∩

 ⋃
A is an atom with A⊆B

A

 (30)

=
⋃

A is an atom with A⊆B

(A ∩B) (31)

=
⋃

A is an atom with A⊆B

A (32)

as required.
We also observe as a corollary of this, also using item 3 of question 12, for

any event B ∈ F ,

P (B) =
∑

A is an atom with A ⊆ B

P (A) (33)

=⇒ :
Suppose that P satisfies the axioms. Define P− by for A an atom of F ,

P−(A) = P (A). P− satisfies

2There was a part of this question which I’d forgotten to write up on the original problem
sheet
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• P−(A) > 0 for all atoms A

•
∑

A is an atom of F P−(A) = 1

the first by the axiom of positivity, the second by eq. (33)
We finally need to show that for any B ∈ F ,

P (B) =
∑

A is an atom and A⊆B

P−(A)

but this follows directly from eq. (33) and the choice of P−.
⇐= : Let P−(A) be defined on atoms with

• P−(A) > 0 for all atoms A

•
∑

A is an atom of F P−(A) = 1

Define
P (B) =

∑
A is an atom and A⊆B

P−(A)

. We need to show that P satisfies the axioms of probability.
Positivity is easy to see.
Normalisation:

P (Ω) =
∑

A is an atom and A⊆Ω

P−(A) =
∑

A is an atom of F

P−(A) = 1

Finite additivity: Let B1 ∩ B2 = ∅. Then observe that there is no atom A
with A ⊆ B1 and A ⊆ B2. Therefore

P (B1 ∪B2) =
∑

A is an atom with A ⊆ (B1 ∪ B2)

P (A) (34)

=
∑

A is an atom with A ⊆ B1

P (A) +
∑

A is an atom with A ⊆ B2

P (A) (35)

=P (B1) + P (B2) (36)

Question 14. Prove that if A and B are independent then from knowing P (A)
and P (B) one can find the probabilities of all the events in the Boolean algebra
generated by A and B.

Answer. Let P (A) = a and P (B) = b. Observe that the atoms of the algebra
are: A ∩ B,A ∩ Bc, Ac ∩ B and Ac ∩ Bc. We show that we can write the
probabilities of each of these in terms of the probabilities of A and B..

Since A and B are independent, we know that P (A∩B) = P (A)·P (B) = a·b.
P (A ∩ Bc) = P (A) − P (A ∩ B) = a − (a · b) (using the axiom of finite

additivity)
P (Ac ∩B) = P (B)− P (A ∩B) = b− (a · b) similarly
P (Ac∩Bc) = 1−P (A∪B) = 1−(P (A)+P (B)−P (A∩B)) = 1−a−b+a ·b.
By eq. (33) we see that this suffices to find the probabilities of the other

members of the Boolean algebra by taking for any E ∈ F

P (E) =
∑

A is an atom with C ⊆ E

P (C)
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Question 15. Show that if A is probabilistically independent of B then B is
probabilistically independent of A. I.e. if P (A|B) = P (A) then P (B|A) = P (B).

Answer. Suppose P (A|B) = P (A). Then by Bayes theorem

P (B|A) =
P (A|B) · P (B)

P (A)
(37)

=
P (A) · P (B)

P (A)
(38)

= P (B) (39)

as required.

Question 16. Random variable X is an indicator function for A ∈ F if and
only if

X(ω) =

{
1 if ω ∈ A

0 if ω 6∈ A.

1. Show that the expected value of the indicator function of A is the proba-
bility of A.

2. Express the indicator functions for A ∩ B, A ∪ B and Ac through the
indicator functions for A and B.

Answer. Let X be the indicator function for A. Then

E[X] = 0 · P ({X = 0}) + 1 · P ({X = 1})
= P ({X = 1}) = P ({ω : X(ω) = 1}) = P ({ω : ω ∈ A})
= P (A) .

This has a nice effect: It shows that the laws of large numbers can give us
information about the probabilities of the events by way of the expectation
values of the events’ indicator functions.

Now let X be the indicator function for A and Y be the indicator function
for B. The indicator function for A ∩ B is 1 for all and only for ω ∈ A ∩ B,
otherwise its 0. Thus we need a function made up from X and Y that behaves
like that. Playing around with algebraic combinations of X and Y might lead
you to X ·Y , and this function does exactly what is needed: X ·Y (ω) is 1 for all
and only for ω that are both in A and in B, since otherwise X(ω) = 0 and thus
X(ω) · Y (ω) = 0 · Y (ω) = 0, or Y (ω) = 0 and thus X(ω) · Y (ω) = X(ω) · 0 = 0.

The indicator function for Ac should “flip” X, the indicator function of A:
When X(ω) = 1, the indicator function of Ac should have the value 0, and vice
versa. One function that does this is (1−X)2.

The indicator function for A∪B must be 1 if ω ∈ A or ω ∈ B. X+Y almost
does the trick: It is not 0 if and only if ω ∈ A∪B. But whenever ω is both in A
and in B (ω ∈ A∩B), X+Y (ω) = 2, which is not what we want. But we already
have an indicator function for A∩B, and so we can express the indicator function
for A ∪ B as X + Y − X · Y . Note that this expression parallels the theorem
about independent probabilities P (A ∪B) = P (A) + P (B)− P (A) · P (B).
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Question 17. 3 Let Ω be infinite. Show that there can be no probability
function defined on F = P(Ω) where for each ω, ω′ ∈ Ω, P ({ω}) = P ({ω′}) > 0.

Answer. Since {ω1, . . . , ωm}∩ {ωm + 1} = ∅ for any two ω1, . . . , ωm+1 ∈ Ω and
ωi 6= ωj when 1 6 i 6= j 6 m + 1, P ({ω1, . . . , ωm+1}) = P ({ω1, . . . , ωm}) +
P ({ωm+1}) for any n ∈ N>0. Therefore P ({ω1, . . . , ωn}) =

∑n
i=1 P ({ωi}) for

all n. Choose n > 1
P (ω1) . Then P ({ω1, . . . , ωn}) =

∑n
i=1 P ({ωi}) = n · P (ω1) >

1
P (ω1) · P (ω1) = 1, which is incompatible with the axioms of probability.

Question 18 (The Birthday Problem). There are n people in the room. As-
sume that peoples birthdays are equally likely to be on any day of the year.
(And that for two different people, where their birthdays lie are independent).
Ignore leap years.

What is the probability that at least one of them has the same birthday as
you? How large does this need to be for the probability to be more than 0.5?

What is the probability that two people have their birthday on the same
day? How large does this need to be for the probability to be more than 0.5?

Answer. The probability that at least one person out of n people has my birth-
day is n

365 . For this to be > 0.5 n must be > 183.
Let Ak be the event that the people p1, . . . , pk all have different birthdays.
P (A1) = 1
P (Ak+1) = P (Ak) ·

(
1− k

365

)
Therefore

P (An) =
∏

06i<n

(
1− i

365

)
(40)

=
∏

06i<n

(
365− i

365

)
(41)

=
365!

(365− n)! · 365n
(42)

By putting this into a calculator we find that when n > 23 this value is > 0.5.

3Note, this question has changed since the original problem sheet since the original question
was just wrong.
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