Day 2: Representation Theorems

Rachael Briggs

July 30, 2014

Some questions:

- 1. What is utility?
 - A functionalist proposal [Ramsey, 1931]: the higher the utility of an outcome, the stronger a person's preference for a lottery with a fixed chance of yielding that outcome.
- 2. Why think that people should (or do) maximize expected utility?
- 3. What is subjective probability?
 - A functionalist proposal: the higher the subjective probability, the shorter the odds at which one is willing to bet on that proposition.
- 4. Why think that people should (or do) assign subjective probabilities that obey the Kolmogorov axioms?

Representation theorems help answer the above questions by

- characterising the functional roles of probability and utility, and
- providing a key premise in an argument for maximising expected utility

Representation Argument for Maximising Expected Utility [Zynda, 2000]

- **The Rationality Condition** The axioms of expected utility theory are the axioms of rational preference.
- **Representability** If a person's preferences obey the axioms of expected utility theory, then he or she can be represented as having degrees of belief that obey the laws of the probability calculus [and a utility function such that she prefers acts with higher expected utility].
- The Reality Condition If a person can be represented as having degrees of belief that obey the probability calculus [and a utility function such that she prefers acts with higher expected utility], then the person really has degrees of belief that obey the laws of the probability calculus [and really does prefer acts with higher expected utility].
- : If a person [fails to prefer acts with higher expected utility], then that person violates at least one of the axioms of rational preference.

Preference and Representation

Preference is a two-place relation over the members of some domain. This domain varies from representation theorem to representation theorem.

• Lotteries [Von Neumann and Morgenstern, 1953]

e.g., I'd prefer a 100% chance at a vegan curry over a 50-50 gamble between a lobster platter and going hungry.

• Acts [Savage, 1972]

e.g., I'd rather crack the last egg into the same bowl as all the other eggs, than crack it into a new bowl

Propositions [Jeffrey, 1983]

e.g., I'd rather that it rain tomorrow than that I try to make a funny joke at dinner and fail

- The objects of preference are the objects of expected utility.
- I'll write

a > b for "*a* is strictly preferred to *b*"

 $a \sim b$ for "a is indifferent to b"

 $a \gtrsim b$ for "a is weakly preferred to b". (For our purposes, you can understand this as a disjunction: $a > b \lor a \sim b$.)

• I'll formulate everything in terms of weak preference ≿. In all the preference orderings we'll be considering,

a > b iff $a \gtrsim b$ and $b \nleq a$

- $a \sim b$ iff $a \gtrsim b$ and $b \gtrsim a$
- **Representation (utilities)** An expected utility function U (over a domain \mathcal{D}) represents a preference ordering \gtrsim (over the same domain \mathcal{D}) if and only if

for all $a, b \in \mathcal{D}$,

 $a \gtrsim b$ if and only if $U(a) \ge U(b)$

Von Neumann and Morgenstern's Representation Theorem

Vocabulary

 \mathcal{G} is a set of lotteries, or gambles: the objects of preference expected utility.

• It contains at least two **constant gambles**, which yield the same outcome no matter what.

• It is closed under a **mixing** operation:

If $f, g \in \mathcal{G}$, and $0 \le \alpha \le 1$, then \mathcal{G} contains $\alpha f \oplus (1 - \alpha)g$

(the gamble that yields f with probability α and g with probability $1 - \alpha$).

- It contains only the constant gambles and gambles that can be constructed from them by this principle in a finite number of "mixing" steps.
- I will identify $\alpha f \oplus (1 \alpha)g$ with $(1 \alpha)g \oplus \alpha f$; and $1f \oplus 0g$ with f.

 \gtrsim is a weak preference relation over members of \mathcal{G}

Preference Axioms

Non-Triviality \mathcal{G} contains at least two constant gambles f and g such that f > g.

Transitivity If $f \gtrsim g$, and $g \gtrsim h$, then $f \gtrsim h$.

Completeness For any $f, g \in \mathcal{G}$, either $f \geq g$ or $g \geq f$.

Averaging If f > g, then for every $\alpha \in (0, 1)$

 $f > \alpha f \oplus (1 - \alpha)g > g$ and if $f \gtrsim g$, then for every α , $f \gtrsim \alpha f \oplus (1 - \alpha)g \gtrsim g$

Independence f > g iff $f \oplus h > g \oplus h$

and $f \gtrsim g$ iff $f \oplus h \gtrsim g \oplus h$

Continuity If f > g > h, then there is some α such that

 $g \sim \alpha f \oplus (1 - \alpha)h$

Reduction of Compound Lotteries $\alpha(\beta f \oplus (1 - \beta)g) \oplus (1 - \alpha)g \sim \alpha\beta f + (1 - \alpha\beta)g$

The Theorem

For every space of gambles \mathcal{G} and weak preference relation \geq satisfying the axioms, there is a function U with domain \mathcal{G} such that

U represents >

 $U(f) \ge U(g)$ iff $f \gtrsim g$

U is an expected utility function

 $U(\alpha f \oplus (1 - \alpha)g) = \alpha U(f) + (1 - \alpha)U(g)$

and U is unique up to positive linear transformation

U' represents > iff there exist real numbers x > 0 and y such that for every $g \in \mathcal{G}$ xU(q)

$$\kappa U(g) + y = U'(g)$$

Sketch of a Proof

Assume a fixed domain of gambles \mathcal{G} and preference relation > satisfying the axioms. Show that there is an expected utility function, representing >, \gtrsim , and that U is unique up to positive linear transformation.

Definition of U

- Pick two gambles g_0 and g_1 such that $g_1 > g_0$.
- Let U(g) be the γ such that:

 $\begin{array}{ll} g \sim \gamma g_1 \oplus (1-\gamma)g_0 & \text{ if } g_1 \gtrsim g \gtrsim g_0 \\ g_1 \sim \frac{1}{\gamma}g \oplus (1-\frac{1}{\gamma})g_0 & \text{ if } g \succ g_1 \\ g_0 \sim \frac{\gamma}{\gamma-1}g_1 \oplus \frac{-1}{\gamma-1}g & \text{ if } g_0 \succ g \end{array}$

Existence of γ (for a given g_0, g_1 and g) follows from the Continuity Axiom.

Uniqueness of γ (for a given g_0, g_1 , and g) follows from Reduction of Compound Lotteries, Averaging, and Transitivity.

To show that γ is unique, we prove the

Better Chances Condition if b > w, then $\alpha b \oplus (1 - \alpha)w > \beta b \oplus (1 - \beta)w$ iff $\alpha > \beta$

U represents \gtrsim

Consider (without loss of generality) an arbitrary f and g, such that $g_1 \gtrsim f \gtrsim g_0$ and $g_1 \gtrsim g \gtrsim g_0$.

We know that there exist exactly one α and exactly one β such that

$$\begin{split} f &\sim \alpha g_1 \oplus (1-\alpha) g_0 \\ g &\sim \beta g_1 \oplus (1-\beta) g_0 \end{split}$$

By our definition of U,

U(f) > U(g) iff $\alpha > \beta$

So by the Better Chances Condition,

U(f) > U(g) iff f > g

U is an expected utility function

Again, consider (without loss of generality) an arbitrary f and g, such that $g_1 \gtrsim f \gtrsim g_0$ and $g_1 \gtrsim g \gtrsim g_0$.

We want to show that

for all γ such that $1 \ge \gamma \ge 0$, $U(\alpha f \oplus (1 - \alpha)g) = \alpha U(f) + (1 - \alpha)U(g)$

1. We have proved that there exist exactly one α and exactly one β such that

 $f \sim \alpha g_1 \oplus (1 - \alpha) g_0$ $g \sim \beta g_1 \oplus (1 - \beta) g_0$

2. By 1 and Independence,

 $\gamma f \oplus (1 - \gamma)g \sim \gamma(\alpha g_1 \oplus (1 - \alpha)g_0) \oplus (1 - \gamma)(\beta g_1 \oplus (1 - \beta)g_0)$

3. By 2 and Reduction of Compound Lotteries,

 $\gamma(\alpha g_1 \oplus (1-\alpha)g_0) \oplus (1-\gamma)(\beta g_1 \oplus (1-\beta)g_0) \\ \sim \gamma \alpha + (1-\gamma)\beta)g_1 \oplus (1-(\gamma \alpha + (1-\gamma)\beta))g_0$

4. By 3 and the definition of U,

 $U(\gamma \alpha + (1 - \gamma)\beta)g_1 \oplus (1 - (\gamma \alpha + (1 - \gamma)\beta))g_0) = \gamma \alpha + (1 - \gamma)\beta$

5. Since U represents \geq , 2 and 4 let us infer

$$U(\gamma f \oplus (1-\gamma)g) = \gamma \alpha + (1-\gamma)\beta$$

6. By the definition of U,

$$U(f) = \alpha$$
$$U(g) = \beta$$

7. By 5 and 6, we have

$$U(\alpha f \oplus (1 - \alpha)g) = \alpha U(f) + (1 - \alpha)U(g)$$

as desired.

U is unique up to positive linear transformation (homework exercise)

(A Little About) Savage's Representation Theorem

- Savage adopts a subjective interpretation of probability. So he has to answer the question: where do the probabilities (used to build lotteries) come from?
- Answer: a representation theorem that builds probabilities and utilities from preferences.

Vocabulary

O is a set of outcomes

- S is a set of states, and \mathcal{F} is a set of events, or subsets of S.
 - Members of \mathcal{F} are bearers of probabilities.

 $\mathcal A$ is a set of acts, understood as finite-valued functions from states to outcomes.

 \gtrsim is a relation over acts

It can also relate sub-acts f_E and g_E , where f_E is the act f conditional on event E, and g_E is the act g conditional on the same event E.

- For each outcome, there is a constant act which yields that outcome in all states.
- If *a* and *b* are acts, and *E* is an event, then there is an act $a_E b$ which yields the same outcome as *a* in *E* states, and the same outcome as *b* in $\neg E$ states.

Highlights

• The axiom that receives the most discussion:

The Sure-Thing Principle For all acts *f* and *g*, *x*, and *y*, and events *E*,

$$f_E x > g_E x$$
 iff $f_E y > g_E y$

This says: your preference between two acts should depend only on what happens in the event that they yield different outcomes.

 Savage defines a subjective "weakly more probable than" relation (≿) for events in terms of preference over acts.

Definition of (\gtrsim) Suppose *a* and *b* are constant acts such that a > b. Then $E(\gtrsim)F$ iff $a_E \& b_{\neg E} \gtrsim a_F \& b_{\neg F}$

- He constrains probability by imposing constraints on preference, which allows him to prove that (≿) is represented by one (and only one) probability function.
- He defines gambles as equivalence classes of acts, and uses the von Neumann-Morgenstern theorem to prove that preferences satisfying his axioms can be represented by an expected utility function (together with the probability function that represents (≿)). Furthermore, the utility function is unique up to positive linear transformation.

References

Richard C Jeffrey. The logic of decision. 2nd edition, 1983.

Frank P Ramsey. Truth and Probability. In *The Foundations of Mathematics and other Logical Essays*, pages 1–41. 1931.

Leonard J Savage. The Foundations of Statistics. Courier Dover Publications, 1972.

- J Von Neumann and Otto Morgenstern. *Theory of Games and Economic Behavior: 3d Ed.* 3rd edition, 1953.
- L Zynda. Representation theorems and realism about degrees of belief. *Philosophy of Science*, 2000.