Solutions for Exercises for Propositional Logic

1. Proof by induction.

- A tautology: $(p \lor (\neg p \lor (q \lor (r \lor s))))$
 - A contradiction: $(p \land (\neg p \land (q \land (r \land s)))))$
 - A contingent sentence: $(p \land (q \land (r \land s)))$
- 3. (a) In order to show functional completeness of $\{\neg, \lor\}$ we need to show that for every formula ϕ whose connectives are included in $\{\neg, \land, \lor, \Rightarrow, \Leftrightarrow\}$ is equivalent to a formula ψ whose connectives are included in $\{\neg, \lor\}$.

Proof by induction.

- Base case: $\phi = p$ for some propositional letter p trivial.
- Inductive step:
 - Assume $\phi = (\neg \chi)$ and that χ is equivalent to a formula ψ_0 whose connectives are included in $\{\neg, \lor\}$. Then $\psi = \neg \psi_0$ is equivalent to ϕ and its connectives are included in $\{\neg, \lor\}$.
 - Assume $\phi = (\chi_0 \lor \chi_1)$: similar to the negation case.
 - Assume $\phi = (\chi_0 \land \chi_1)$ and that χ_0 and χ_1 are equivalent to ψ_0 and ψ_1 respectively, the latter's connectives are included in $\{\neg, \lor\}$. Define $\psi = (\neg(\neg\psi_0 \lor \neg\psi_1))$.
 - Assume $\phi = (\chi_0 \Rightarrow \chi_1)$ and that χ_0 and χ_1 are equivalent to ψ_0 and ψ_1 respectively, the latter's connectives are included in $\{\neg, \lor\}$. Define $\psi = (\neg \psi_0 \lor \psi_1)$.
 - Assume $\phi = (\chi_0 \Leftrightarrow \chi_1)$ and that χ_0 and χ_1 are equivalent to ψ_0 and ψ_1 respectively, the latter's connectives are included in $\{\neg, \lor\}$. Define $\psi = (\neg(\neg(\neg\psi_0 \lor \psi_1) \lor \neg(\neg\psi_1 \lor \psi_0)))$.
- (b) In order to show that $\{\lor, \Rightarrow\}$ is not functionally complete one needs to show that there is a formula ϕ in PL that is not equivalent to any formula using only \lor and \Rightarrow .

Outline of proof: Let $\phi = \neg p$. The main claim follows from:

Claim: Let v be the valuation that assigns T to all propositional letters. For every formula ψ , if ψ uses only \vee and \Rightarrow , then ψ is satisfied by v.

Proof: by induction.

- (a) Every consistent set of wffs has an inconsistent subset.—False. The set {p} is consistent, and both its subsets, {p} and Ø are consistent.
 - (b) Every inconsistent set of wffs has a consistent subset.—True. The empty set is a subset of every set and is consistent. However, not every inconsistent set of wffs has a non-empty consistent subset—consider $\{p \land \neg p\}$.

- (c) If $\{\phi, \psi\}$ is consistent, then $\{\phi, \neg\psi\}$ is inconsistent.—False. Consider $\{p, q\}$ and $\{p, \neg q\}$.
- (d) If $\{\phi, \psi\}$ is inconsistent, then $\phi \models \neg \psi$.—True. If $\{\phi, \psi\}$ is inconsistent, then there is no valuation v that satisfies ϕ and ψ , so every valuation v that satisfies ϕ does not satisfy ψ and thus satisfies $\neg \psi$, and so $\phi \models \neg \psi$.
- 5. (a) $\vdash_H ((p \Rightarrow \neg q) \Rightarrow s) \Rightarrow (((r \Rightarrow \neg q) \Rightarrow s) \Rightarrow ((p \Rightarrow \neg q) \Rightarrow s))$ instance of axiom P2.
 - (b) $\vdash_H (p \Rightarrow p)$ By the definition of satisfaction for \Rightarrow , $\models_v (p \Rightarrow p)$ for every v, and thus $\models (p \Rightarrow p)$, and then by completeness we have $\vdash (p \Rightarrow p)$.
 - (c) $\neg p \not\vdash_H \neg q$ Let v be the valuation such that v(p) = F and v(q) = T. Then v satisfies $\neg p$ and does not satisfy $\neg q$, so $\neg p \not\models \neg q$. Thus by contraposing soundness, $\neg p \not\vdash_H \neg q$.
 - (d) $\not\vdash_H p \Rightarrow (q \Rightarrow \neg q)$ Similar to (c), using the valuation v such that v(p) = v(q) = T.