
Dynamic Epistemic and Doxastic Logics

Sonja Smets, ILLC, Amsterdam

(Slides are based on joint lectures with A. Baltag, ILLC)

Financial Support Acknowledgement:

1



PLAN OF THIS COURSE

1. Puzzles. Logics of knowledge and belief. Epistemic and

Doxastic models.

2. Core of Standard (“Hard”) Dynamic-Epistemic Logic:

Public and Private announcements. Event models. The Product

Update Mechanism.

3. Belief Revision: Plausibility Models. Conditional belief. Belief

Upgrades. Doxastic event models and the Action-Priority Rule.

4. Further Topics in the last three lectures: Iterated Belief

Revision. Belief Merge. Collective Learning. Informational

Cascades. Surprise Examination Paradox etc.
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1.1 Epistemic Puzzles: Muddy Children

Suppose there are 4 children, all of them being good logicians, exactly 3

of them having dirty faces. Each can see the faces of the others, but

doesn’t see his/her own face.

The father publicly announces:

“At least one of you is dirty”.

Then the father does another paradoxical thing: starts repeating over

and over the same question “Do you know if you are dirty or not,

and if so, which of the two?”
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After each question, the children have to answer publicly, sincerely and

simultaneously, based only on their knowledge, without taking any

guesses. No other communication is allowed and nobody can lie.

One can show that, after 2 rounds of questions and answers, all the

dirty children will come to know they are dirty! So they give

this answer in the 3rd round, after which the clean child also comes

to knows she’s clean, giving the correct answer at the 4th round.
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Muddy Children Puzzle continued

First Question: What’s the point of the father’s first announcement

(”At least one of you is dirty”)?

Apparently, this message is not informative to any of the children: the

statement was already known to everybody! But the puzzle wouldn’t

work without it: in fact this announcement adds information to the

system! The children implicitly learn some new fact, namely the fact

that what each of them used to know in private is now public knowledge.
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Second Question: What’s the point of the father’s repeated questions?

If the father knows that his children are good logicians, then at each

step the father knows already the answer to his question,

before even asking it! However, the puzzle wouldn’t work without these

questions. In a way, it seems the father’s questions are “abnormal”, in

that they don’t actually aim at filling a gap in father’s knowledge; but

instead they are part of a Socratic strategy of

teaching-through-questions.

Third Question: How can the children’s statements of ignorance lead

them to knowledge?
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Puzzle no 2: Sneaky Children

Let us modify the last example a bit.

Suppose the children are somehow rewarded for answering as quickly as

possible, but they are punished for incorrect answers; thus they are

interested in getting to the correct conclusion as fast as possible.

Suppose also that, after the first round of questions, two of the

dirty children “cheat” on the others by secretly announcing each

other that they’re dirty, while none of the others suspects this can

happen.
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Honest Children Always Suffer

One can easily see that the third dirty child will be totally

deceived, coming to the “logical” conclusion that... she is

clean!

So, after giving the wrong answer, she ends up by being punished for

her credulity, despite her impeccable logic.
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Clean Children Always Go Crazy

What happens to the clean child?

Well, assuming she doesn’t suspect any cheating, she is facing

a contradiction: two of the dirty children answered too quickly,

coming to know they’re dirty before they were supposed to know!

If the third child simply updates her knowledge monotonically with this

new information (and uses classical logic), then she ends up believing

everything : she goes crazy!
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The Amazon Island

This is another story encoding the same puzzle:

On the island of Amazonia, women are dominant and the law says that,

if at any point a woman knows her husband is cheating on her, she

must shoot him the same day at noon in the main square.

Now the queen (truthfully) tells the women: “At least one of your

husbands is a cheater. Whenever somebody’s husband is cheating, all

the other women know it”.

For 16 days, nothing happens. Then, in the 17th day, shootings are

heard.

Question: How many husbands died?
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The Dangers of Mercy

In the Amazonia version of the story, assume that again there are

exactly 17 cheating husbands (out of 1 million husbands on the island),

while the rest of 999.983 husbands are faithful.

Consider what happens now if all the wives of the 17 cheating husbands

secretely decide to break the Queen’s rules, by quietly sparing the lives

of their husbands, even when they get to know that they are cheating.

We also assume that all the other wives do not suspect this: not only

that they strictly obey by the Queen’s rules, but they believe that it is

common knowledge that everybody else obeys by those same rules.
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It’s easy to see that, in this case, 17 days will pass without any shooting.

But it’s also easy to show that in the 18th day, shots will be heard.

How many husbands will die in this scenario? How many of

these are innocent?
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Surprised Children

The students in a high-school class know for sure that the date of

the exam has been fixed in one of the five (working) days of

next week: it’ll be the last week of the term, and it’s got to be an

exam, and only one exam.

But they don’t know in which day.

Now the Teacher announces her students that the exam’s date will

be a surprise: i.e. even in the evening before the exam, the students

will still not be sure that the exam is tomorrow.
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Paradoxical Argumentation

Intuitively, one can prove (by backward induction, starting with

Friday) that, IF this announcement is true, then the exam

cannot take place in any day of the week.

So, using this argument, the students come to “know” that

the announcement is false: the exam CANNOT be a surprise.

GIVEN THIS, they feel entitle to dismiss the announcement, and...

THEN, surprise: whenever the exam will come (say, on Tuesday), it

WILL indeed be a complete surprise!
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1.2. Epistemic-Doxastic Models and Logics

Epistemic Logic was first formalized by Hintikka (1962), who also

sketched the first steps in formalizing doxastic logic.

They were further developed and studied by both philosophers (Parikh,

Stalnaker etc.), economists (Aumann) and computer-scientists

(Halpern, Vardi, Fagin etc.)
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Syntax of Single-Agent Epistemic-Doxastic Logic

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ
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Models for Single-Agent Information

We are given a set of “possible worlds”, meant to represent all the

relevant epistemic/doxastic possibilities in a certain situation.

EXAMPLE 1: a coin is on the table, but the (implicit) agent doesn’t

know (nor believe he knows) which face is up.

�� ��
�� ��H

�� ��
�� ��T
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Knowledge or Belief

The universal quantifier over the domain of possibilities is interpreted

as knowledge, or belief , by the implicit agent.

�



�
	So we say the agent knows, or believes, a sentence ϕ if ϕ is true in

all the possible worlds of the model.

The specific interpretation (knowledge or belief) depends on the

context.

In the previous example, the agent doesn’t know (nor believe) that the

coin lies Heads up, and neither that it lies Tails up.
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Learning: Update

EXAMPLE 2:

Suppose now the agent looks at the coin and he sees it’s Heads up.

The model of the new situation is now:

�� ��
�� ��H

Only one epistemic possibility has survived: the agent now

knows/believes that the coin lies Heads up.
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Update as World Elimination

In general, updating corresponds to world elimination:

�



�
	an update with a sentence ϕ is simply the operation of deleting all

the non-ϕ possibilities

After the update, the worlds not satisfying ϕ are no longer possible: the

actual world is known not to be among them.
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Truth and Reality

But is ϕ “really” true (in the “real” world), apart from the agent’s

knowledge or beliefs?

For this, we need to specify which of the possible worlds is is the

actual world.
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Real World

Suppose that, in the original situation (before learning), the coin lied

Heads up indeed (though the agent didn’t know, or believe, this).

We represent this situation by marking the actual (“real” state of

the) world with a red star:

�� ��* H
�� ��T
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Mistaken Updates

But what if the real world is not among the “possible” ones? What if

the agent’s sight was so bad that she only thought she saw the coin

lying Heads up, when in fact it lied Tails up?

After the “update”, her epistemically-possible worlds are just

�� ��
�� ��H

but we cannot mark the actual world here, since it doesn’t belong

to the agent’s model!
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False Beliefs

Clearly, in this case, the model only represents the agent’s beliefs, but

NOT her “knowledge” (in any meaningful sense): the agent believes

that the coin lies Heads up, but this is wrong!

Knowledge is usually assumed to be truthful, but in this case the

agent’s belief is false.

But still, how can we talk about “truth” in a model in which the

actual world is not represented?!
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Third-person Models

The solution is to go beyond the agent’s own model, by taking

an “objective” (third-person) perspective: the real pos-

sibility is always in the model, even if the agent believes it to

be impossible.

To point out which worlds are believed to be possible by the agent

we encircle them: these worlds form the “sphere of beliefs”.�



�
	“Belief ” now quantifies ONLY over the worlds in this sphere,

while “knowledge” still quantifies over ALL possible worlds.

EXAMPLE 3: �� ��HON MLHI JK �� ��* T
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Example 4

In the Surprise Exam story, a possible initial situation (BEFORE the

Teacher’s announcement) might be given by:

ON MLHI JK�� ��
�� ��1

�� ��
�� ��2

�� ��
�� ��3

�� ��
�� ��4

�� ��
�� ��5

where i means that: the exam takes places in the i-th (working) day of

the week.#

"

 

!

This encodes an initial situation in which the student knows that there

will be an exam in (exactly) one of the days, but he doesn’t know

the day, and moreover he doesn’t have any special belief about

this: he considers all days as being possible.

We are not told when will the exam take place: no red star.
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Beliefs

EXAMPLE 5:

If however, the Student believes (for some reason or another) that the

exam will take place either Monday or Tuesday, then the correct

representation is:

�� ��
�� ��1

_^ ]\XY Z[�� ��
�� ��2

�� ��
�� ��3

�� ��
�� ��4

�� ��
�� ��5

Again, we are not told when is the exam, so no red star.
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However, if we are told that the exam is in fact on Thursday (though

the student still doesn’t know this), then the model is:

�� ��
�� ��1

_^ ]\XY Z[�� ��
�� ��2

�� ��
�� ��3

�� ��
�� ��*4

�� ��
�� ��5

�



�
	In this model, some of the student’s beliefs are false, since the real

world does NOT belongs to his “sphere of beliefs”.
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Simple Models for Knowledge and Belief

For a set Φ of facts, a (single-agent, pointed) epistemic-doxastic

model is a structure:

S = (S, S0, ‖.‖, s∗ ) , consisting of:

1. A set S of “possible worlds” (or possible “states of the world”, also

known as “ontic states”). S defines the agent’s epistemic state:

these are the states that are “epistemically possible”.

2. A non-empty subset S0 ⊆ S, S0 6= ∅, called the “sphere of beliefs”,

or the agent’s doxastic state: these are the states that

“doxastically possible”.

3. A map ‖.‖ : Φ→ P(S), called the valuation, assigning to each

p ∈ Φ a set ‖p‖S of states.
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4. A designated world s∗ ∈ S, called the “actual world”.
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Interpretation

• The epistemic state S gives us an (implicit) agent’s state of

knowledge: he knows the real world belongs to S, but cannot

distinguish between the states in S, so cannot know which of them

is the real one.

• The doxastic state S0 gives us the agent’s state of belief : he

believes that the real world belongs to S0, but his beliefs are

consistent with any world in S0.

• The valuation tells us which ontic facts hold in which world:

we say that p is true at s if s ∈ ‖p‖.

• The actual world s∗ gives us the “real state” of the world: what

really is the case.
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Truth

For any world w in a model S and any sentence ϕ, we write

w |=S ϕ

if ϕ is true in the world w.

When the model S is fixed, we skip the subscript and simply write

w |= ϕ.

For atomic sentences, this is given by the valuation map:

w |= p iff w ∈ ‖p‖,

while for other propositional formulas is given by the usual truth

clauses:
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w |= ¬ϕ iff w 6|= ϕ,

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ .

Disjunction, Conditional, Biconditional: We take ϕ ∨ ψ to be just

an abbreviation for ¬(¬ϕ ∧ ¬ψ), ϕ⇒ ψ to be just an abbreviation for

¬ϕ ∨ ψ, and ϕ⇔ ψ to be an abbreviation for (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).

As a consequence, we have e.g:

w |=S ϕ ∨ ψ iff either w |=S ϕ or w |=S ψ

etc.
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Interpretation Map

We can extend the valuation ‖p‖S to an interpretation map ‖ϕ‖S for

all propositional formulas ϕ:

‖ϕ‖S := {w ∈ S : w |=S ϕ}.

Obviously, this has the property that

‖¬ϕ‖S = S \ ‖ϕ‖S,

‖ϕ ∧ ψ‖S = ‖ϕ‖S ∩ ‖ψ‖S,

‖ϕ ∨ ψ‖S = ‖ϕ‖S ∪ ‖ψ‖S.

We now want to extend the interpretation to all the sentences in

doxastic-epistemic logic.
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Knowledge and Belief�



�
	Knowledge is defined as “truth in all epistemically possible

worlds”, while belief is “truth in all doxastically possible worlds”

Formally:

w |= Kϕ iff t |= ϕ for all t ∈ S,

w |= Bϕ iff t |= ϕ for all t ∈ S0.
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Validity and Satisfiability

A sentence is valid over epistemic-doxastic models if it is true at every

state in every epistemic-doxastic model.

A sentence is satisfiable (over epistemic-doxastic models) if it is true

some state in some epistemic-doxastic model.
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Consequences

For every sentence ϕ,ψ etc, the following are valid over

epistemic-doxastic models:

1. Veracity of Knowledge:

Kϕ⇒ ϕ

2. Positive Introspection of Knowledge:

Kϕ⇒ KKϕ

3. Negative Introspection of Knowledge:

¬Kϕ⇒ K¬Kϕ

4. Consistency of Belief:

¬B(ϕ ∧ ¬ϕ)
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5. Positive Introspection of Belief:

Bϕ⇒ BBϕ

6. Negative Introspection of Belief:

¬Bϕ⇒ B¬Bϕ

7. Strong Positive Introspection of Belief:

Bϕ⇒ KBϕ

8. Strong Negative Introspection of Belief:

¬Bϕ⇒ K¬Bϕ

9. Knowledge implies Belief:

Kϕ⇒ Bϕ
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Epistemic-Doxastic Logic: Sound and Complete Proof System

In fact, a sound and complete proof system for single-agent

epistemic-doxastic logic can be obtained by taking as axioms:

validities (1)-(4) and (7)-(9) above, together with all

propositional tautologies, as well as “Kripke’s axioms” for

knowledge and belief

K(ϕ⇒ ψ)⇒ (Kϕ⇒ Kψ) ,

B(ϕ⇒ ψ)⇒ (Bϕ⇒ Bψ) ,

and together with following inference rules:

Modus Ponens: From ϕ and ϕ⇒ ψ infer ψ.

Necessitation: From ϕ infer Kϕ.
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Generalization

Many philosophers deny that knowledge is introspective, and some

philosophers deny that belief is introspective. In particular, both

common usage and Platonic dialogues suggest that people may

believe they know things that they don’t actually know.

Other of the above validities may also be debatable: e.g. some “crazy”

agents may have inconsistent beliefs.�
�

�
�

So it is convenient to have a more general semantics, in which the above

principles do not necessarily hold, so that one can pick whichever prin-

ciples one considers true.
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Kripke Semantics: multi-agent

For a set Φ of facts and a finite set A of agents, a Φ-Kripke model is

a structure

S = (S,→A , ‖.‖, s∗ )

consisting of

1. a set S of “possible worlds”

2. a family of binary accessibility relations
a→⊆ S × S, one for

each agent a ∈ A

3. and a valuation ‖.‖ : Φ→ P(S), assigning to each p ∈ Φ a set ‖p‖S
of worlds

4. a designated world s∗: the “actual” one.
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• The valuation is also called a truth map. It is meant to express the

factual content of a given world.

• The arrows (accessibility relations) →A express the agents’

uncertainty between various worlds.

• A Kripke model is called a state model whenever we think of its

“worlds” as possible states. In this case, the elements p ∈ Φ are called

atomic sentences, being meant to represent basic “ontic”

(non-epistemic) facts, which may hold or not at a given state.
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Satisfaction Relation

Write s |=S ϕ for the satisfaction relation: ϕ is true at world s in

model S. This is defined inductively:

s |=S p iff s ∈ ‖p‖S

s |=S ¬ϕ iff s 6|=S ϕ

s |=S ϕ ∧ ψ iff s |=S ϕ and s |=S ψ
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Extending the Truth Map

Equivalently, this allows us to extend the truth map ‖ϕ‖S to all

propositional formulas, by putting:

‖ϕ‖S := {s ∈ S : s |=S ϕ}.

Obviously, this has the property that

‖¬ϕ‖S = S \ ‖ϕ‖S,

‖ϕ ∧ ψ‖S = ‖ϕ‖S ∩ ‖ψ‖S,

‖ϕ ∨ ψ‖S = ‖ϕ‖S ∪ ‖ψ‖S.

Any new propositional operator A(ϕ1, . . . , ϕn) is “defined” by extending

the truth map to define ‖A(ϕ1, . . . , ϕn)‖S, i.e. by giving a defining

inductive clause for satisfaction s |= A(ϕ1, . . . , ϕn).
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Modalities�

�

�

�
For every sentence ϕ, we can define a sentence 2aϕ by (universally)

quantifying over accessible worlds:

s |=S 2aϕ iff t |=S ϕ for all t such that s
a→ t.

Its existential dual

3aϕ := ¬2a¬ϕ

denotes a sense of “epistemic/doxastic possibility”.
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Kripke Models for Knowledge and Belief

From now on, new notational convention:

In a context when we interpret a modality 2aϕ as knowledge, we use

the notation Kaϕ instead, and we denote by ∼a the underlying binary

accessibility relation.

When we interpret the modality 2aϕ as belief , we use the notation

Baϕ instead, and we use the (long arrow) notation
a−→ for the

underlying binary doxastic accessibility relation.
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So a Kripke model for knowledge AND belief is of the form

(S, {∼a}a∈A, {
a−→}a∈A, ‖.‖, s∗)

with Ka interpreted as the modality [∼a] for the epistemic relation ∼a,

and Ba as the modality [
a−→] for the doxastic relation

a−→.
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Coin example again: knowledge

The (single) agent’s knowledge in the concealed coin scenario can now

be represented as:

�� ��* Ha &&
oo a //

�� ��T ajj

The arrows represent the epistemic relation ∼a, which captures the

agent’s uncertainty about the state the world. An arrow from state s

to state t means that, if s were the real state, then the agent wouldn’t

distinguish it from state t: for all he knows, the real state might be t.
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Knowledge properties

The fact that Ka in this model satisfied our validities (1)-(3) is now

reflected in the fact that ∼a is an equivalence relation in this model:

• The Veracity (known as axiom T in modal logic) Kaϕ⇒ ϕ

corresponds to the reflexivity of the relation ∼a.

• Positive Introspection (known as axiom 4 in modal logic)

Kaϕ⇒ KaKaϕ corresponds to the transitivity of the relation ∼a.

• Negative Introspection (known as axiom 5 in modal logic)

¬Kaϕ⇒ Ka¬Kaϕ corresponds to Euclideaness of the relation

∼a:

if s ∼a t and s ∼a w then t ∼a w.
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In the context of the other two, Euclideaness is equivalent to

symmetry:

if s ∼a t then t ∼a s.
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Epistemic Models

An epistemic model (or S5-model) is a Kripke model in which all

the accessibility relations are equivalence relations, i.e. reflexive,

transitive and symmetric

(or equivalently: reflexive, transitive and Euclidean).
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Multi-agent scenario: the concealed coin

Two players a, b and a referee c play a game. In front of everybody, the

referee throws a fair coin, catching it in his palm and fully covering it,

before anybody (including himself) can see on which side the coin has

landed. �� ��* Ha,b,c &&
oo a,b,c //

�� ��T a,b,cjj
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Coin example again: beliefs

The (single) agent’s beliefs after the mistaken update are now

representable as: �� ��Ha 44
oo a

�� ��* T

In both worlds (i.e. irrespective of what world is the real one), the

agent a believes that the coin lies Heads up.
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Belief properties

The fact that belief in this model satisfied our validities (4)-(6) is now

reflected in the fact that the doxastic accessibility in the above model

has the following properties:

• Consistency of beliefs (known as axiom D in modal logic)

¬Ba(ϕ ∧ ¬ϕ) corresponds to the seriality of the relation
a−→:

∀s∃t such that s
a−→ t.

• Positive Introspection for Beliefs (axiom 4) Baϕ⇒ BaBaϕ

corresponds to the transitivity of the relation
a−→.

• Negative Introspection for Beliefs (axiom 5) ¬Baϕ⇒ Ba¬Baϕ
corresponds to Euclideaness of the relation

a−→.
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Doxastic Models

A doxastic model (or KD45-model) is a Φ-Kripke model satisfying

the following properties:

• (D) Seriality: for every s there exists some t such that s
a−→ t ;

• (4) Transitivity: If s
a−→ t and t

a−→ w then s
a−→ w

• (5) Euclideaness : If s
a−→ t and s

a−→ w then t
a−→ w
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Putting together in the same structure the belief arrows
a−→ from the

previous example with the knowledge arrows from before, now denoted

by ∼a,

we obtain a Kripke model for both knowledge AND belief .
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Properties connecting Knowledge and Belief

The fact that knowledge and belief in this model satisfied our validities

(7)-(9) is now reflected in the fact that the accessibility relations
a−→ in

the above model have the following properties:

• Strong Positive Introspection of beliefs Baϕ⇒ KaBaϕ

corresponds to

if s ∼a t and t
a−→ w then s

a−→ w.

• Strong Negative Introspection of beliefs ¬Baϕ⇒ Ka¬Baϕ
corresponds to

if s ∼a t and s
a−→ w then t

a−→ w.

• Knowledge Implies Beliefs Kaϕ⇒ Baϕ corresponds to

if s
a−→ t then s ∼a t.
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Epistemic-Doxastic Kripke Models

A Kripke model satisfying all the above conditions on the relations ∼a
and

a−→ is called an epistemic-doxastic Kripke model.

There are two important observations to be made about these models:

• first, they are completely equivalent to our simple, sphere-based

epistemic-doxastic models;

• second, the epistemic relation is completely determined by the doxastic

relation.
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Equivalence of (single agent) Models

EXERCISE: For every epistemic-doxastic model S = (S, S0, ‖.‖, s∗)
there exists a doxastic-epistemic Kripke model S′ = (S,∼,−→, ‖.‖, s∗)
(having the same set of worlds S, same valuation ‖.‖ and same real

world s∗), such that the same sentences of doxastic-epistemic

logic are true at the real world s in model S as in model S′:

s |=S ϕ iff s |=S′ ϕ ,

for every sentence ϕ.

Conversely, for every doxastic-epistemic Kripke model

S′ = (S,∼,−→, ‖.‖, s∗) there exist a doxastic-epistemic model

S = (S, S0, ‖.‖, s∗) such that, for every sentence ϕ, we have:

s |=S ϕ iff s |=S′ ϕ .
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Doxastic Relations Uniquely Determine Epistemic Ones

EXERCISE:

Given a doxastic Kripke model (S,→, ‖.‖, s∗) (i.e. one in which the

accessibility relation → is serial, transitive and Euclidean), there is a

unique relation ∼⊆ S × S such that (S,∼,→, ‖.‖, s∗) is a

doxastic-epistemic Kripke model.

This means that, to encode an epistemic-doxastic model as a Kripke

model, we only need to draw the arrows for the doxastic

relation.
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S4 Models for weak types of knowledge

But, we can see that, in the setting of Kripke models, the properties

specific to “epistemic-doxastic models” are NOT

automatically satisfied.�� ��So Kripke semantics is more general than the “sphere semantics”.

In fact, one can use Kripke semantics to interpret various weaker

notions of “knowledge”, e.g. a type of knowledge that is truthful

(factive) and positively introspective, but NOT necessarily negative

introspective.

An S4-model for knowledge is a Kripke model satisfying only

reflexivity and transitivity (but not necessarily symmetry or

Euclideaness).
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Kripke Models for Non-Standard Notions of Belief

Similarly, by dropping the corresponding semantic conditions, one can

use Kripke models to represent non-introspective beliefs, or even

inconsistent beliefs.

64



The Problem of Logical Omniscience

However, it is easy to see that any Kripke modality 2 for an

accessibility relation still validates Kripke’s axiom

(K) 2(ϕ⇒ ψ)⇒ (2ϕ⇒ ψ),

and still satisfies the Necessitation Rule:

if ϕ is valid, then 2ϕ is valid.

So, if we interpret the modality as “knowledge” or “belief”, then every

logical validity is known/believed, and similarly every logical

entailment between two propositions is known/believed.

This means that Kripke semantics can only model “ideal” reasoners,

who may have limited access to external truths, but have unlimited

inference powers.
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1.3. Common Attitudes

• Distributed Knowledge (belief)

• Common Knowledge (belief)

• Everyone Knows (believes)
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Scenario: Distributed Knowledge

Agents: Alice, Bob, Charles and Eve

Suppose Alice would like to know with whom did Bob go out for

dinner. But Alice only knows he went out with one of his two friends,

Charles or Eve (but not both: they can’t stand each other).

Suppose that in fact Bob went out with Eve; so Charles obviously know

that Bob didn’t go out with him.

If Alice and Charles could put their knowledge together, they would

find out that Bob went out with Eve. So Alice gives a phone call to

Charles, they chat and find out.
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�

�

�
Before the chat, none of them knew that Bob has gone out with Eve, but

this fact was distributed knowledge between the two of them:

putting their knowledge together was enough to ensure the knowledge of

this new fact.
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“Distributed” Modalities'

&

$

%

The sentence D2ϕ is obtained by quantifying over all worlds that are

simultaneously accessible by all arrows (from a given world):

s |=S D2ϕ iff t |=S ϕ for every t such that s
a→ t holds for all a ∈ A.

In other words, D2 is the Kripke modality corresponding to the inter-

section of all epistemic relations
⋂
a∈A

a→

• When the relations
a→ are reflexive (corresponding to some form of

“knowledge”), D2ϕ may be interpreted as distributed knowledge (in

which case we use the notation Dkϕ instead).

• When the relations
a→ represent beliefs, one can also interpret D2 as

“distributed belief” Dbϕ, but in this case it might actually be false.
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Distributed Knowledge Within a Group

Distributed knowledge can also be considered in a restricted form:

distributed knowledge within a given (sub)group G ⊆ A.

The definition is the same, except we restrict the intersection of the

arrows within the group G:

s |=S D2Gϕ iff t |=S ϕ for every t such that s
a→ t holds for all a ∈ G.

�
�

�
�

Distributed knowledge captures the implicit (or “virtual”) knowl-

edge of the group G: what the agents in G could come to know if they

would pool together all their private knowledge.
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Distributed Knowledge: Axiomatization

It is easy to see that each of the semantic properties (reflexivity,

transitivity, Euclideaness) corresponding to logical postulates usually

attributed to “knowledge” (Veracity, Positive Introspection, Negative

Introspection) holds for the intersection relation
⋂
a∈G

a→ whenever it

holds for each of the arrows
a→ (for each a ∈ G).

Thus, a complete axiomatization of epistemic logic with

distributed knowledge is given by: your favorite axioms and rules

for multi-agent epistemic logic (i.e. a subset of the axioms and rules of

multi-agent S5); the corresponding axioms and rules for Distributed

Knowledge (corresponding to the same subset of S5); the axiom

2aϕ⇒ D2Gϕ , for every a ∈ G .
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“Everybody knows...”

Suppose that, in fact, everybody knows the road rules in France.

For instance, everybody knows that a red light means “stop” and a

green light means “go”. And suppose everybody respects the rules that

(s)he knows.

Question: Is this enough for you to feel safe, as a driver?

Answer: NO.

Why? Think about it!
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Common Knowledge

Suppose the road rules (and the fact they are respected) are common

knowledge: everybody knows (and respects) the rules, and everybody

knows that everybody knows (and respects) the rules, and... etc.

Now, you can drive safely!
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Another Example: The Coordinated Attack

Two divisions of the same army, commanded by general A and general

B, are camped on two hilltops overlooking a valley. In the valley awaits

the enemy (C).

It is clear that if both divisions attack simultaneously they will

win, while if only 1 division attacks it will be defeated.

So neither general will attack unless he is absolutely sure that the other

will attack with him. General A sends a messenger to general B to

coodinate a simultaneous attack, by conveying the message “attack at

dawn”. But it is possible that the messenger would be captured by the

enemy. Fortunately, on this particular night, everything goes smooth.

How long it will take them to coordinate an attack?
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Well, B cannot attack at dawn, after receiving the message, since he’s

still not sure that A knows he received the message; indeed, A might

think it possible the messenger was captured, in which case A will not

attack at dawn, since he’ll fear B won’t attack. So B has to send

another messenger to A to confirm the receipt of the first message (an

’acknowledgment’). After receiving it, A knows that B got the first

message. But he still cannot attack, since he’s not sure B will: for all

that B knows, his messenger might have been captured (in which case

A wouldn’t know the first message was received). So A has to send

back to B another messenger, confirming the receipt of the previous

acknowledgment.

This goes forever, without achieving any coordination: even if no

messenger is captured, one can show that no finite number of successful

deliveries of “acknowledgments to acknowledgments” can allow the

generals to attack!
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“Common” Modalities�



�
	The sentence C2ϕ is obtained by quantifying over all worlds that are

accessible by any concatenations of arrows:

s |=S C2ϕ iff t |=S ϕ for every t and every a finite chain

(of length n ≥ 0) of the form s = s0
a1→ s1

a2→ s2 · · ·
an→ sn = t.

C2ϕ may be interpreted as common knowledge (in which case we

use the notation Ckϕ instead) or common belief (in which case we

use Cbϕ instead), depending on the context.

76



Common Knowledge Within a Group

Common knowledge (or belief) can also be considered in a restricted

form, as common knowledge within a given (sub)group G ⊆ A. Here we

restrict the concatenated arrows to arrows within the group G:

s |=S C2Gϕ iff t |=S ϕ for every t and every a finite chain

of the form s = s0
a1→ s1

a2→ s2 · · ·
an→ sn = t, with a1, . . . , an ∈ G.

Full common knowledge/belief C2 (as previously defined) corresponds

to the case that G is the set A of all agents:

C2ϕ = C2Aϕ
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Common Knowledge as an Infinite Conjunction

If we make the abbreviation

EGϕ :=
∧
a∈G

2aϕ

(“everybody knows ϕ ”), then we can easily check that:�
�

�
�

s |=S C2Gϕ iff s satisfies all the (infinitely many) sentences

ϕ,EGϕ,EGEGϕ,EGEGEGϕ, . . .
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In this sense, we can say that EGϕ is equivalent to the “infinite

conjunction”

ϕ ∧ EGϕ ∧ EGEGϕ ∧ . . .

However, the most used modal-epistemic languages are finitary, so that

C2 cannot be defined as the (impossible to form) infinite conjunction.

Instead, C2 is usually taken as a primitive operator (introduced via

the above semantic clause).
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2.1. Logics of public and private announcements

PAL (the logic of public announcements) was first formalized

(including Reduction Laws) by Plaza (1989) and independently by

Gerbrandy and Groeneveld (1997).

The problem of completely axiomatizing PAL in the presence of

the common knowledge operator was first solved by Baltag, Moss

and Solecki (1998).

A logic for “secret (fully private) announcements” was first

proposed by Gerbrandy (1999).

A logic for “private, but legal, announcements” (what we will

call “fair-game announcements”) was developed by H. van Ditmarsch

(2000).
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Recall multi-agent scenario: the concealed coin

Two players a, b and a referee c play a game. In front of everybody, the

referee throws a fair coin, catching it in his palm and fully covering it,

before anybody (including himself) can see on which side the coin has

landed.

�� ��* Ha,b,c &&
oo a,b,c //

�� ��T a,b,cjj
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Scenario 2: The coin revealed

The referee c opens his palm and shows the face of the coin to

everybody (to the public, composed of a and b, but also to himself):

they all see it’s Heads up, and they all see that the others see it

etc.

So this is a “public announcement” that the coin lies Heads up.

We denote this event by !H. Intuitively, after the announcement, we

have common knowledge of H, so the model of the new situation is:

�� ��* Ha,b,c &&
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Public Announcements are (Joint) Updates!

But this is just the result of updating with H: deleting all the

non-H-worlds.

So, in the multi-agent case, updating captures public

announcements.�



�
	From now on, we denote by !ϕ the operation of deleting the non-ϕ worlds,

and call it public announcement with ϕ, or joint update with ϕ.
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Scenario 3: ‘Legal’ Private Viewing

Instead of Scenario 2: in front of everybody, the referee (c) uncovers the

coin, so that (they all see that) he, and only he, can see the upper

face. This changes the initial model to

�� ��* Ha,b,c &&
oo a,b //

�� ��T a,b,c
mm

Now, c knows the real state. E.g. if it’s Heads, he knows it, and

disregards the possibility of Tails. a and b don’t know the real state,

but they know that c knows it .

c’s viewing of the coin is a “legal”, non-deceitful, although private

action.
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Fair-Game Announcements

Equivalently: in front of everybody, an announcement of the upper face

of the coin is made, but in such a way that (it is common knowledge

that) only c hears it.

Such announcements (first modeled by H. van Ditmarsch) are called

fair-game announcements:

they can be thought of as “legal moves” in a fair game: nobody is

cheating, all players are aware of the possibility of this move, but only

some of the players (usually the one who makes the move) can see the

actual move. The others know the range of possible moves at that

moment, and they know that the “insider” knows his move, but they

don’t necessarily know the move.
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Scenario 4: Cheating

Suppose that, after Scenario 1, the referee c has taken a peek at the

coin, before covering it. Nobody has noticed this. Indeed, let’s

assume that c knows that a and b did not suspect anything.

This is an instance of cheating: a private viewing which is “illegal”, in

the sense that it is deceitful for a and b. Now, a and b think that

nobody knows on which side the coin is lying. But they are wrong!
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The Model after Cheating

�� ��
�� ��∗H

c
��

a,b

}}||
||
||
|| a,b

  B
BB

BB
BB

B

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT

We indicated the real world here. In the actual world (above), a and b

think that the only possibilities are the worlds below. That is, they do

not even consider the “real” world as a possibility.

Such models in which we indicate the real world are called pointed

models.
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Scenario 5: Secret Communication

After cheating (Scenario 4), c engages in another ”illegal” action: he

secretely sends an email to his friend a, informing her that the

coin is Heads up.

Suppose the delivery and the secrecy of the message are guaranteed: so

a and c have common knowledge that H, and that b doesn’t know they

know this.

Indeed, b is completely fooled: he doesn’t suspect that c could have

taken a peek, nor that he could have been engaged in secret

communication.
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The model is

�� ��
�� ��∗H

a,c
��

b

}}||
||
||
|| b

  B
BB

BB
BB

B

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT
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Private Announcements

Both of the above actions were examples of completely private

announcements

!Gϕ

of a sentence ϕ to a group G of agents: in the first case G = {c}, in the

second case G = {a, c}.

The “insiders” (in G) know what’s going on, the “outsiders” don’t

suspect anything.
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Scenario 5’: Wiretapping?

In Scenario 5′, everything goes on as in Scenario 5, except that in the

meantime b is secretely breaking into c’s email account (or

wiretapping his phone) and reading c’s secret message.

Nobody suspects this illegal attack on c’s privacy. So both c and a

think their secret communication is really secret and unsuspected by b:

the deceivers are deceived.

What is the model of the situation after this action?!

Things are getting rather complicated!
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Scenario 6

This starts right after Scenario 2, when it was common knowledge that

c knew the face. c attempts to send a secret message to a announcing

that H is the case.

• c is convinced the communication channel is fully secure and reliable;

moreover, he thinks that b doesn’t even suspect this secret

communication is going on.

• In fact, unknown and unsuspected by c, the message is intercepted,

stopped and read by b. As a result, it never makes it to a, and in fact a

never knows or suspects any of this.

• As for b, he knows all of the above: not only now he knows the

message, but he knows that he “fooled” everybody, in the way

described above.
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The Update Problem

We need to find a general method to solve all the above problems, i.e.

to compute all these different kinds of updates.
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2.2.“Standard DEL”

• studies the multi-agent information flow of “hard

information” (irrevocable, absolutely certain, fully introspective

“knowledge”) as well as “soft”, but essentially un-revisable,

information (“beliefs” that change monotonically, but are never

overturned);

• gives an answer to the Update Problem, based on the BMS (Baltag,

Moss and Solecki 98) setting: logics of epistemic actions;

• it arose from generalizing previous work on logics for public/private

announcements.

• this dynamics is essentially monotonic (no belief revision!),

though it can model very complex forms of communication.
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Models for ‘Events’

• Until now, our Kripke models capture only epistemic situations, i.e.

they only contain static information: they all are state models. We can

thus represent the result of each of our Scenarios, but not what is

actually going on.

• Our scenarios involve various types of changes that may affect agents’

beliefs or state of knowledge: a public announcement, a ‘legal’

(non-deceitful) act of private learning, ‘illegal’ (unsuspected) private

learning etc.

• We want to use now Kripke models to represent such types of

epistemic events, in a way that is similar to the representations we have

for epistemic states.
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Event Models

An event model (or “action model”)

Σ = (Σ,→A , pre)

is just like an Kripke model,

except that its elements are now called actions (or “simple events”)

and instead of the valuation we have a precondition map pre,

associating a sentence preσ to each action σ.
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Epistemic/Doxastic Event Models

An event model is epistemic, or respectively a doxastic, event model

if it satisfies the S5, or respectively the KD45, conditions.
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Interpretation

We call the simple events σ ∈ Σ: deterministic actions of a particularly

simple kind, i.e. they do not change the “facts” of the world, but only

the agents’ beliefs/knowledge. In other words, they are “purely

epistemic” actions.

For σ ∈ Σ, we interpret preσ as giving the precondition of the action

σ: this is a sentence that is true in a world iff σ can be performed. In a

sense, preσ gives the implicit information carried by σ.

Finally, the accessibility relations express the agents’

knowledge/beliefs about the current action taking place.
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The Product Update

Given a state model S = (S,→A , ‖.‖) and an action model

Σ = (Σ,→A , pre), we define their update product

S⊗Σ = (S ⊗ Σ,→A , ‖.‖)

to be a new state model, given by:

1. S ⊗ Σ is

{(s, σ) ∈ S × Σ : s |=S preσ) }.

2. (s, σ)→A (s′, σ′) iff s→A s′ and σ→A σ′.

3. ‖p‖S⊗Σ = {(s, σ) ∈ S ⊗ Σ : s ∈ ‖p‖S}.
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Product of Pointed Models�



�
	As before, we can consider pointed event models, if we want to specify

the actual event taking place.

Naturally, if initially the actual state was s and then the actual event is

σ, then the actual output-state is (s, σ).
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Interpretation

The product arrows encode the idea that: two output-states are

indistinguishable iff they are the result of indistinguishable

actions performed on indistinguishable input-states.�

�

�

�

This comprises two intuitions:

1. “No Miracles”: knowledge can only gained from (the epistemic ap-

pearance of) actions;

2. “Perfect Recall”: once gained, knowledge is never lost.

The fact that the valuation is the same as on the input-state tells us

that these actions are purely epistemic.
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Examples: Public Announcement

The event model Σ!ϕ for public announcement !ϕ consists of a single

action, with precondition ϕ and reflexive arrows:

�� ��
�� ��∗ϕ

a,b,c...
��

EXERCISE: Check that, for every state model S, S⊗Σ!ϕ is indeed the

result of deleting all non-ϕ worlds from S.
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More Examples: Taking a Peek

The action in Scenario 4: c takes a peek at the coin and sees the Head

is up, without anybody noticing.

�� ��*Hc
,,

a,b //
�� ��true a,b,cxx

There are two actions in this model:

1) the real event (on the left) is the cheating action of c “taking a

peek”.

2) The action on the right is the apparent action skip, having any

tautological sentence true as its precondition: this is the action in

which nothing happens. This is what the outsiders (a and b) think it

is going on: nothing, really.

103



The Product Update

We can now check that the product of�� ��*Ha,b,c
,,

oo a,b,c //
�� ��T a,b,cjj

and �� ��*Hc
,,

a,b //
�� ��true a,b,cxx

is indeed what intuitively should be:
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�� ��
�� ��∗H

c
��

a,b

}}||
||
||
|| a,b

  B
BB

BB
BB

B

�� ��
�� ��H

a,b,c

JJ a,b,c
//
�� ��
�� ��Too

a,b,c

TT
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Private Announcements

More generally, a fully private announcement !Gϕ of ϕ to a

subgroup G is described by the action on the left in the event model

�� ��*ϕG 00
A\G //

�� ��true Axx

This subsumes both taking a peak (Example 4) and the secret

communication in Example 5.

106



Fair-Game Announcements

The following event model represents the situation in which it is

common knowledge that an agent c privately learns whether ϕ or ¬ϕ is

the case:

�� ��*ϕA 00
oo A\{c} // �� ��¬ϕ App

This is a “fair-game announcement” Faircϕ.

The case ϕ := H represents the action in Example 3 (“legal viewing” of

the coin by c).
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Solving Scenario 5’: Wiretapping

Recall Scenario 5: the supposedly secret message from c to a is secretly

intercepted by b. This is an instance of a private announcements with

(secret) interception by a group of outsiders.

�� ��*H

b

VV
a,c //

�� ��H

a,c

VV
b //

�� ��true

a,b,c

VV
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Dynamic Modalities

For any action σ ∈ Σ, we can consider the corresponding dynamic

modality [σ]ϕ.

This is a property of the original model, expressing the fact that, if

action σ happens, then ϕ will come to be true after that.

We can easily define the epistemic proposition [σ]ϕ by:

s |=S [σ]ϕ iff (s, σ) ∈ S⊗Σ implies (s, σ) |=S⊗Σ ϕ
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Appearance

For any agent a and any action σ ∈ Σ, we define the appearance of

action σ to a, denoted by σa, as:

σa = {σ′ ∈ Σ : σ
a→ σ′}

When σ happens, it appears to a as if either one of the actions σ′ ∈ σa
is happening.
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Examples

(!ϕ)a = {!ϕ} for all a ∈ A,

(!Gϕ)a = {!Gϕ} for all insiders a ∈ G,

(!Gϕ)a = {skip} = {!(true)} for all outsiders a 6∈ G,

(Fairaϕ)a = {Fairaϕ}

(Fairaϕ)b = {Fairaϕ, Faira¬ϕ} for b 6= a.
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Reduction Laws

If σ ∈ Σ is a simple epistemic action, then we have the following

properties (or “axioms”):

• Preservation of “Facts”. For all atomic p ∈ Φ :

[σ]p ⇐⇒ preσ ⇒ p

• Partial Functionality:

[σ]¬ϕ ⇐⇒ preσ ⇒ ¬[σ]ϕ

• Normality:

[σ] (ϕ ∧ ψ) ⇐⇒ [σ]ϕ ∧ [σ]ψ

Here, 2 can be either knowledge K or belief B, depending on whether

the model is doxastic or epistemic.
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• “Action-Knowledge Axiom”:

[σ]2aϕ ⇐⇒ preσ ⇒
∧

σ′∈σa

2a[σ′]ϕ

This Action-Knowledge Axiom helps us to compute the state of

knowledge/belief of an agent after an event, in terms of the agent’s

initial state of knowledge or belief and of the event’s appearance to the

agent.
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Instances of Action-Knowledge Axiom

If a ∈ G, b 6∈ G, c 6= a, then:

[!θ]Baϕ ⇐⇒ θ ⇒ Ba[!θ]ϕ

[!Gθ]Baϕ ⇐⇒ θ ⇒ Ba[!Gθ]ϕ

[!Gθ]Bbϕ ⇐⇒ θ ⇒ Bbϕ

[Fairaθ]Baϕ ⇐⇒ θ ⇒ Ba[Fairaθ]ϕ

[Fairaθ]Bcϕ ⇐⇒ θ ⇒ Bc([[Fairaθ]ϕ ∧ [Faira¬θ]ϕ)
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EXERCISES

• Solve Scenario 5’, by computing the update product of the state

model obtained in Scenario 4 with the event model that we saw.

• Solve Scenario 6 using update product.

• Solve the Muddy Children puzzle, using repeated updates. Encode

the conclusion of the puzzle in a DEL sentence.
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