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This Session & The Summer School

Many lectures/tutorials have presupposed the possibility of
translating natural language sentences into interpretable
logical formulas.

But: This translation procedure has not been made explicit.

1 In this session, we introduce a procedure for the translation of
natural language, which is inspired by the work of Montague:

Kristina talks about Montague.

Kristina  k Montague  m talk  talk about  about

Kristina talks about Montague  about (m, talk, k)

2 We will then use this procedure to provide a (formal)
semantics for natural language. Montague Grammar



The (Rough) Plan

nat. lang. logical model-th.
sentences formulas objects

K. talks talk (k)
T

translation interpret’n

  À



Compositional Semantics

We will be concerned with compositional – not lexical – semantics:

Lexical semantics studies the meaning of individual words:

JtalkK := “to convey or express ideas, thought,
information etc. by means of speech”

Compositional semantics studies the way in which complex
phrases obtain a meaning from their constituents:

JKristinaK = JkK JMontagueK = JmK JtalkK = JtalkK JaboutK = JaboutK
JKristina talks about MontagueK = Jabout (m, talk, k)K

Principle (Semantic compositionality) (Partee, 1984)

The meaning of an expression is a function of the meanings of its
constituents and their mode of combination.



Compositional Semantics

We will be concerned with compositional – not lexical – semantics:

Lexical semantics studies the meaning of individual words.

Compositional semantics studies the way in which complex
phrases obtain a meaning from their constituents:

Montague:

JKristinaK = Jk0K JMontagueK = Jm0K JtalkK = Jtalk0K JaboutK = Jabout0K
JKristina talks about MontagueK = Jabout0(m0, talk0, k0)K

‘Word-prime semantics’ (Crouch and King, 2008),
cf. (Carlson, 1977)

Principle (Semantic compositionality) (Partee, 1984)

The meaning of an expression is a function of the meanings of its
constituents and their mode of combination.



Word-Prime Semantics (Carlson, 1977, Foreword)



Word-Prime Semantics (Carlson, 1977, Foreword)



Why Do Compositional Semantics?

1 Explain the productivity and systematicity of linguistic
understanding:

You understand (1) even if you have not come across it before:

(1) Penny Maddy has agreed to have her picture posted on the
door of Room 1205.

2 Obtain objects (here: formulas) to which we can apply our
formal techniques. (These formulas are free of ambiguities).

Only (2b), not (2a), can be analyzed in epistemic logic:

(2) a. Mary knows that Penny is a mathematical philosopher.

b. K

�
mathematical-philosopher (penny),mary

�

) mathematical-philosopher (penny) (by T)

) K

�
K

�
math.-philosopher (penny),mary

�
,mary

�
(by 4)



Why Do Compositional Semantics?

3 Evaluate the truth or falsity of natural language sentences
(via the truth/falsity of their translating formulas):

‘Penny is a philosopher’ is true (or false) in M under g

i↵ |=
M, g philosopher (penny) (resp. =|

M, g philosopher (penny))

4 Predict the relation of entailment/equivalence betw. sentences
(via the entailment relation between their transl. formulas):

‘Penny is a philosopher’ entails ‘Philosophers exist’ in M, g

i↵ |=
M, g philosopher (penny) ) (9x .philosopher (x))

5 Explain speakers’ judgements about consistency, presupposi-
tion, anaphoric relations, etc.



The (Concrete) Plan

1 Why a logical approach to NL semantics?

2 A challenge for this approach: the logic/language mismatch

3 Montague’s solution . . . : typed lambda logic

4 Applying Montague’s solution: extensional (formal) semantics

5 Montagovian extensions: intensional semantics

Non-Montagovian extensions: hyperintens’l & situation sem

My work on formal semantics: robustness & minimal models

6 Conclusion



Motivation Challenge �-Logic Types NL Semantics Montague Wrap-Up References

A (Historical) Challenge

Frege, Russell, etc. assume the translation of natural language (NL)
sentences into formulas of first-order predicate logic.

This translation faces two challenges:

Underlying problem Many NL expressions have a di↵erent syntactic
form than their predicate-logical translations:

grammatical form 6= logical form

The language-to-logic translation is not fully compositional:

Principle (Compositionality of translations)

The (logical) translation of an expression is a function of the
translations of its constituents and their mode of combination.

This significantly reduces the utility of our logical translation.
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A (Historical) Challenge

This translation faces two challenges:

1 Many logical translations have di↵erent ‘constituents’ than
their associated NL sentences:

Translations of simple sentences often allow a division into logical
subject (i.e. argument) and logical predicate (i.e. function):

(3) a.
NP

Penny
VP

is a philosopher b.
fct

philosopher

arg

(penny)

Translations of complex sentences often defy this division:

(4) a.
NP

Mary
VP

knows that Penny is a philosopher.

b.
fct’

K (philosopher (penny),
arg

mary

fct”

)
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The Logic/Language Mismatch

2 Some constituents of NL sentences do not have corresponding
contiguous parts in the sentences’ translating logical formulas
(Russell, 1905):

Some elements of grammatical form correspond with contiguous

parts of logical form:

(3) a. Penny is a philosopher b. philosopher (penny)

Some elements of grammatical form only correspond with non-

contiguous parts of logical form:

(5) a. A philosopher talks

b. 9x . philosopher (x)^ talk (x)

In (5b), the translation of a is spread over the entire formula!
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Montague’s Solution (Montague, 1970a)

1 Replace first-order predicate logic by a higher-order logic
with lambda abstraction typed lambda logic

2 Translate NL sentences into equivalents of their translating
formulas from (4b) and (5b), which match the sentences’
grammatical form:

Some elements of grammatical form only correspond with non-

contiguous parts of logical form:

(5) a. A philosopher talks

b. 9x . philosopher (x)^ talk (x)

, �P
1

�P 9x .P
1

(x) ^ P(x) (philosopher) (talk)
| {z } | {z } | {z }

a philosopher talks| {z } | {z }
a philosopher talks
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Matching Logic and Language (Montague, 1970a)

Richard Montague

(⇤1930, Stockton,
†1971, Los Angeles)

I reject the contention that an important

theoretical di↵erence exists between formal

and natural languages.

(Montague, 1970a, p. 188)

There is in my opinion no important

theoretical di↵erence between natural

languages and the artificial languages of

logicians; indeed I consider it possible to

comprehend the syntax and semantics of

both kinds of languages within a single

natural and mathematically precise theory.

(Montague, 1970b, p. 222)
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Matching Logic and Language (Montague, 1970a)

Richard Montague

(⇤1930, Stockton,
†1971, Los Angeles)

I reject the contention that an important

theoretical di↵erence exists between formal

and natural languages.

(Montague, 1970a, p. 188)

Montague’s thesis Natural languages can
be described as interpreted formal
systems.

(Bach, 1986, p. 574)

Chomsky’s thesis Natural languages can
be described as formal systems.

(Bach, 1986, p. 574)
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Montague’s Solution: The �-Calculus (Church, 1985)

The �-calculus is a theory of functions.

� is a binding operator (like 9 or 8) that
binds a variable (e.g. x), and

takes scope over expressions (e.g. A) which (typically) contain
bound occurrences of this variable.

�x .A denotes a function which, when applied to some
argument d , returns the value of A with x interpreted as d :

J�x .AKg := {hd , JAKg [d/x]i | d 2 D} ,

where D is the range of x ’s values. �-abstraction

Example �-terms

• �x . philosopher (x) • �P .P (penny)
• �P 9x . philosopher (x) ^ P (x) • �P

1

�P 9x .P
1

(x) ^ P (x)
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The �-Calculus: Application (Church, 1985)

The dual of �-abstraction: function application

A (B) denotes the result of applying the denotation of A to the
denotation of B :

JA (B)Kg := JAKg (JBKg ).

Example terms

• �x . philosopher (x) (penny) • �P .P (penny) (philosopher)

• �P 9x . philosopher (x) ^ P (x) (talk)

• �P
1

�P 9x .P
1

(x) ^ P (x) (philosopher)
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The Rules of �-Conversion (Church, 1985)

Application and abstraction are governed by three rules:

Rule 1: �-conversion (function application)

The substitution of all free occurrences of a variable in a formula
with a suitable argument:

(�x .A)(B) =� A {x := B} , if x is free for B in A

• �x . philosopher (x) (penny) =� philosopher (penny)

• �P
1

�P 9x .P
1

(x) ^ P(x) (philosopher) (talk)

=� �P9x . (philosopher) (x) ^ P(x) (talk)

=� 9x . (philosopher) (x) ^ (talk) (x)

Our translation of NL sentences will use many �-conversions.
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The Rules of �-Conversion (Church, 1985)

We will use ↵-conversions to avoid the obtaining of non-equivalent
terms by ‘variable collision’:

Observe: �y�x . find (y)(x) x =� �x . find (x) (x)

But:  ‘find someone’  ‘find oneself’

Problem: The conversion is not meaning-preserving!

Solution: Use the ↵-equivalent of �y�x . find (y)(x): �y�z. find (y)(z)

�y�z. find (y)(z) x =� �x . find (x) (z)

 ‘find someone’  ‘find someone’

Rule 2: ↵-conversion (alphabetic variants)

The renaming of bound variables:

�x .A =↵ �y .A {x := y} , if y is free for x in A
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The Rules of �-Conversion (Church, 1985)

Rule 1: �-conversion (function application)

The substitution of all free occurrences of a variable in a formula
with a suitable argument:

(�x .A)(B) =� A {x := B} , if x is free for B in A

Rule 2: ↵-conversion (alphabetic variants)

The renaming of bound variables:

�x .A =↵ �y .A {x := y} , if y is free for x in A

Rule 3: ⌘-conversion (identifying co-extensional functions)

The replacement of �x .A (x) by A:

�x .A (x) =⌘ A , if x is not free in A.
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�-Logic (Beeson, 2005)

A problem:

The �-calculus only has 2 operators: application, abstraction

The translations of NL sentences typically use connectives and
quantifiers: ^,_,¬,!,$,=, 8, 9, . . .

The solution: Extend the �-calculus to a �-logic:
(This logic combines application and abstraction
with the familiar logical connectives and quantifiers)

Term-forming rules

(i) All non-logical constants and variables are terms, ? is a term;

�(ii) If A and B are terms, then A (B) is a term;

�(iii) If A is a term and x a variable, then �x .A is a term;

(iv) If B and C are terms, then (B ! C ) is a term.
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Notation (Henkin, 1950)

From ? and !, the other connectives and quantifiers are easily
obtained:

> stands for ? ! ?
8x .A stands for (�x .>) ! (�x .A)

B = C stands for 8Y .Y (B) ! Y (C )

¬B stands for �x .B(x) = ?
B ^ C stands for (�x .(�X .X (B = C )) = (�X .X (>)))

. . .
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Typed �-Logic (Church, 1940), cf. (Curry and Feys, 1958)

Another problem:

(Untyped) �-logics allow the self-application of predicates.

But this gives rise to the familiar Russell-style paradoxes.

This also disables a ‘logical’ explanation of grammatical well-
formedness/distributional phenomena.

The solution: 1. Introduce a type system, cf. (Russell, 1908):

Types ( ‘1Type’)

(i) Basic types: e (for individuals/‘entities’), t (for truth-values)

(ii) Complex types: ↵ ! � (written h↵,�i ), where ↵,� are types

(for functions from type-↵ to type-� objects)

1Type 3
¶
he, ti , he, he, tii , hhe, ti, ti , hhhe, ti, ti, ti , . . .

©
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Merits of Typing 1

Types structure the semantic domains underlying natural language:

proper names (John, Mary, Bill)

demonstratives (he, she, that)

sentence adverbs, sentences (John is a man,

s-complement verbs, John loves Mary

prepositions Bill walks quickly)

verb phrase adverbs intrans. verbs (walk, talk),

(quickly, rapidly, common nouns (unicorn,

allegedly) man, woman)

transitive verbs (find, love, seek)

e , t

e
indivi-
duals

t
truth-
values

he, ti
properties

he, he, tii
relations

hhe, ti,
he, tii

HO p’ties

. . .
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Merits of Typing 2

Types provide a formal basis for syntactic categories, and
explain the grammatical well-formedness of NL expressions:

Penny talks.X talk : he, ti, penny : e

A philosopher talks.X a : hhe, ti, hhe, ti, tii, philosopher , talk : he, ti
Mary meets Penny.X meet : he, he, tii, mary , penny : e

Mary talks Penny.⇤ talk : he, ti , mary : e, penny : e

Mary meets .⇤ meet : he, he, tii, mary : e
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Typed �-Logic (Church, 1940), cf. (Curry and Feys, 1958)

1 Introduce a type system for our �-logic. X
2 Type the �-logical terms.

TY
1

A �-logic with basic types e and t, cf. (Church, 1940)

To type TY
1

terms, we need the definition of conjoinable types:

Conjoinable types ( ‘CoType’) (Partee and Rooth, 1983)

Types of the form h↵
1

, h. . . h↵
n

, tiii that ‘end in t’.

CoType 3
¶
t , he, ti , he, he, tii , hhe, ti, ti , hhhe, ti, ti, ti , . . .

©
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TY1 Terms

Basic TY
1

terms
A set, L := [↵21TypeL↵, of non-logical constants;

A set,V := [↵21TypeV↵, of variables.

TY
1

terms
The set T↵ of TY

1

terms of the type ↵ is defined as follows:

(i) L↵,V↵ ✓ T↵, ? 2 T

t

;

�(ii) If A 2 Th↵,�i and B 2 T↵, then A (B) 2 T� ;

�(iii) If A 2 T� and x 2 V↵, then (�x .A) 2 Th↵,�i;

(iv) If B ,C 2 T✏2CoType

, then (B ! C ) 2 T

t

.

We require that terms involving >, 8,=,¬,^ are suitably typed.
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TY1 Frames

D↵ := the set of objects (the domain ) of the type ↵:

A := the set of individuals (‘entities’): the domain of type e.

2 := the set {T,F} of truth-values: the domain of type t.

Dh↵,�i ✓ {f | f : D↵ ! D�} := a subset of the set of fcts
from objects of type ↵ to objects of type �:
the domain of type h↵,�i.

General TY
1

frame

A set F = {D↵ |↵ 2 1Type} of non-empty TY
1

domains.

The generality of frames ensures the recursive axiomatizability of
the entailment relation, and the completeness of TY

1

.
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General TY1 Models

TY
1

terms in L are related to TY
1

objects in F via

interpretation functions I

F

: L ! F , s.t. I

F

(c↵) 2 D↵ ;
variable assignments g

F

: V ! F , s.t. g

F

(x↵) 2 D↵ .

We write g

F

[d↵/x↵] for the assignment g 0
F

s.t. g 0
F

(x) = d and
g

0
F

(y↵) = g

F

(y) if x 6= y.

We denote the set of all assignments g
F

w.r.t. F by G
F

.

Definition (General TY
1

model)

A triple M

F

= hF , I
F

,V
F

i, where V

F

: (G
F

⇥ [↵T↵) ! F is s.t.

(i) V

F

(g
F

, c) := I

F

(c) if c 2 L,

V

F

(g
F

, x) := g

F

(x) if x 2 V;
�(ii) V

F

(g
F

,A(B)) := V

F

(g
F

,A)
Ä
V

F

(g
F

,B)
ä
;

�(ii) V

F

(g
F

,�x↵.A) :=
¶¨

d ,V
F

(g
F

[d/x ],A)
∂
| d 2 D�

©
.
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Truth, Entailment, and Equivalence

TY
1

truth

�
t

is true in M

F

, g
F

(i.e. |=
M

F

, g
F

�) i↵ V

F

(g
F

,�) = T

�
t

is false in M

F

, g
F

(i.e. =|
M

F

, g
F

�) i↵ V

F

(g
F

,�) = F

i↵ 6|=
M

F

, g
F

� i↵ V

F

(g
F

,¬�) = T

TY
1

entailment

� = {� | � 2 T✏2CoType

} entails � = {� | � 2 T✏} (i.e. � |=
g

�) if
\

�2�
V

F

(g
F

, �) ✓
[

�2�
V

F

(g
F

, �) for all M
F

, g
F

.

We define TY
1

equivalence as mutual TY
1

entailment.

The behavior of TY
1

entailment is characterized by classical
sequent rules.



From Natural Language to TY1 Semantics

Indirect interpretation We interpret (a fragment of) natural lan-
guage via its translation into the language of TY

1

:

1 Formalize a fragment of natural language.

2 Develop the lang. L and models hF , IF i of the interpr. logic.

3 Provide a set of translation rules from expressions X of the
fragment to terms � of the logic.

fragment L F

X � IF (�)
translation IF
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The Fragment

1. Lexical insertion rules:

Label Rule Traditional name

(LI 1) DET �! every, the, a Determiner
(LI 2) NP �! Mary, Penny, she

n

Noun Phrase
(LI 3) NP �! who(m) Noun Phrase
(LI 4) N �! philosopher Common Noun
(LI 5) IV �! talk, exist Intransitive Verb
(LI 6) TV �! meet, be Transitive Verb
(LI 7) SCV �! know Sentence-Comp. Verb
(LI 8) C �! that Complementizer
(LI 9) ADJ �! mathematical Adjective
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The Fragment

2. Phrase structure rules:

Label Rule Traditional name

(PS 1) S �! NP VP Sentence
(PS 2) NP �! DET N Noun Phrase
(PS 3) CP �! C S Complement Phrase
(PS 4) VP �! IV Verb Phrase
(PS 5) VP �! TV NP Verb Phrase
(PS 6) VP �! SCV CP Verb Phrase
(PS 7) N �! ADJ N Common Noun
. . . . . . . . .
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The Language L

Constant TY
1

type Variable TY
1

type

mary, penny e x , x
1

, . . . , x
n

, y , z e

talk, philosopher he, ti p, q, r t

meet he, he, tii P ,P
1

, . . . ,P
n

he, ti
know ht, he, tii Q,Q

1

, . . . ,Q
n

hhe, ti, ti
mathematical hhe, ti, he, tii R ,R

1

, . . . ,R
n

h↵
1

, h. . . h↵
n

, tiii
~
X a sequence of variables of the types ↵

1

, . . . ,↵
n

The frame F is very large.

IF : L ! F respects the conventional rel’s bw. content words:

IF (talk) ✓ IF (�x9y . y = x)
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NL-to-TY1 Translation

NL expressions (LFs) are translated into TY
1

terms via type-driven
translation (Klein and Sag, 1985):

Definition (Type-driven translation)

The smallest relation,  , between LFs and TY
1

terms such that

(T0) X  A if X is a word and A its translation. (Base Rule)

(T1) If X  A, then [X ] A. (Copying)

(T2) If X  A and Y  B , then [XY ] A(B) (Application)
if A(B) is well-formed, [YX ] B(A) ow;

(T3) If X  A, Y  B , then, if A(�v
n

.B) (Quantifying In)
is well-formed, [X n

Y ] A(�v
n

.B).

(T4) If X  A, A reduces to B , then X  B . (Reduction)
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Basic Translations

(T0) governs the translation of lexical elements/words:

Basic TY
1

translations
Mary  mary ; Penny  penny ;

t

n

 x

n

f. each n; who(m)  �P .P ;
t

n

/she
n

 x

n

f. each n; that  �p. p;
philosopher  philosopher ; talk  talk ;

exist  �x 9y . y = x ; meet  �y�x .meet (y)(x);
be  �y�x .x = y ; know  �ps�x . know (p)(x) ^ p;

mathemat’l  �P �x . (mathematical (P))(x) ^ P(x);
a  �P

1

�P 9x .P
1

(x) ^ P (x);
every  �P

1

�P 8x .P
1

(x) ! P (x);
the  �P

1

�P 9x 8y .(P
1

(y) $ x = y) ^ P (x)

and  �R
1

�R�~X .R (~X ) ^ R

1

(~X ) ;

not  �R�~X .¬R (~X ) ;
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Derived Translations: ‘Penny talks’

1. [npPenny]  penny (by (T0))

2. [ivtalks]  talk =⌘ �x . talk (x) (by (T0), (T4))

3. [vp[ivtalks]]  �x . talk (x) (by (T1))

4. [s[npPenny][vp[ivtalks]]]  �x . talk (x) penny (by (T2))
=� talk ( penny )

Analogous: Mary meets Penny
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Derived Translations: ‘Mary meets Penny’

1. [npPenny]  penny (by (T0))

2. [vp[ivtalks]]  �x . talk (x) ((T0), (T1), (T4))

4. [s[npPenny][vp[ivtalks]]]  �x . talk (x) penny (by (T2))
=� talk ( penny )

Analogous:

1. [npMary]  mary 2. [npPenny]  penny (by (T0))

3. [ivmeets]  meet =⌘ �y�x .meet (y)(x) ((T0), (T4))

4. [vp[ivmeets][npPenny]]  �y�x .meet (y)(x) penny (by (T2))
=� �x .meet ( penny )(x)

5. [s[npMary][vp[ivmeets][npPenny]]]

 �x .meet ( penny )(x) mary (by (T2))
=� �x .meet ( penny )( mary )



Motivation Challenge �-Logic Types NL Semantics Montague Wrap-Up References

Other Derived Translations

[s[npPenny][vp[tvis][np[deta][nphilosopher]]]]

 9x . philosopher (x) ^ penny = x

= philosopher (penny)

[s[npPenny][vp[tvis][np[deta][n[adjmathematical][nphilosopher]]]]]

 9x .((math’l (philosopher))(x) ^ philosopher (x)) ^ penny (x)

[s[npmary][vp[scvknows][cp[cthat]
[s[npPenny][vp[tvis][np[deta][n[adjmathematical][nphilosopher]]]]]]]]]

 K (9x .((math’l (philosopher))(x) ^ philos. (x)) ^ penny (x),mary)^
(9x .((math’l (philosopher))(x) ^ philos. (x)) ^ penny (x))

[s[np[deta][nphilosopher]][vp[ivexists]]]  9x . philosopher (x)

[s[np[deta][n[adjmathematical][nphilosopher]]][vp[ivexists]]]
 9x . (mathematical (philosopher))(x)
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TY1-Based NL Entailment

Assume ⌅ = {X |X  �} and ⌥ = {Y |Y  �} are sets of
NL sentences which are translated into the sets of
TY

1

terms � = {� | � 2 T

t

} and � = {� | � 2 T

t

}.

NL entailment

⌅ entails ⌥ w.r.t. MF , gF if |=
MF , gF � ) �.

Mary knows that Penny is a mathematical philosopher.
entails Mary knows that Penny is a philosopher.
entails Mary knows that philosophers exist.

Mary knows that Penny is a mathematical philosopher.
entails Penny is a mathematical philosopher.
entails Penny is a philosopher.
entails Philosophers exist.
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TY1-Based NL Equivalence and Consistency

NL entailment

⌅ entails ⌥ w.r.t. MF , gF if |=
MF , gF � ) �.

NL equivalence

⌅ is equivalent to ⌥ w.r.t. MF , gF if |=
MF , gF � , �.

Mary knows that Penny is a mathematical philosopher.

is equiv. to Mary knows that Penny is a mathematical philosopher,
and Penny is a mathematical philosopher.

is equiv. to Mary knows that Penny is a mathematical philosopher
and that Penny is a philosopher, and Penny is a
mathematical philosopher and is a philosopher.

Explain why the last 2 sentences appear redundant.
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Another Merit: Disambiguation

1. Quantifier interaction Ex.: Every man loves a woman.

9-narrow scope: [s[np[devery][nman]][vp[tvloves][np [da] [nwoman]]]]

 8x .man (x) ! ( 9 y .woman (y) ^ love (y , x))

9-wide scope: [[np [da] [nwoman]]1[s[np[devery][nman]][vp[tvloves] t1]]]

 9 y .woman (y) ^ (8x .man (x) ! love (y , x))

2. Quantifier/intensional context-interaction
Ex.: John seeks a unicorn.

9-narrow scope: [s[npJohn][vp[tvseeks][np [deta] [nunicorn]]]]

 seek ([�P 9 x . unicorn (x) ^ P (x)], john)

9-wide scope: [s[np [deta] [nunicorn]]0 [s[npJohn][vp[tvseeks] t0]]]

 9 x . unicorn (x) ^ seek ([�P .P (x)], john)

The unicorn has become the ‘mascot’ of Montague semantics.
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Problem 1: Coarse-grained sentence-interpretations

Fact: TY
1

interprets sentences and CPs as truth-values.

All true sentences are logically equivalent.

We may substitute true sentences in all contexts, including
propositional attitude contexts.

But this warrants counterintuitive inferences:

Mary knows that Penny is a philosopher. T

Penny is a philosopher , 13 + 12 3 = 9 3 + 10 3. T

Mary knows that 13 + 12 3 = 9 3 + 10 3. F
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Problem 2: Partee’s ‘temperature puzzle’ (Montague, 1973)

Fact: TY
1

interprets all common nouns and intransitive verbs as
sets of individuals (type he, ti).

Intensional Ns (temperature) and IVs (rise) are interpreted in
the type he, ti.

But this warrants counterintuitive inferences:

The temperature is ninety. T

The temperature rises. T

Ninety rises. ?
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Montague’s Solution (Montague, 1973), cf. (Gallin, 1975)

1 Extend the TY
1

type system via a type s for indices
(possible worlds/world-time pairs): TY

2

TY
2

Types ( ‘2Type’)

(i) Basic types: e (for individuals), s (for indices),
t (for truth-values)

(ii) Complex types: ↵ ! � (written h↵,�i ), where ↵,� are types

2Type 3
¶
hs, ei , hs, ti , he, hs, tii , hhs, ei, hs, tii , he, he, hs, tiii

©

2 Interpret sentences and CPs as propositions, hs, ti ,
cf. (Kripke, 1963; Stalnaker, 1976);
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Montague’s Solution (Montague, 1973), cf. (Gallin, 1975)

2 Interpret sentences and CPs as propositions, hs, ti ,
cf. (Kripke, 1963; Stalnaker, 1976);

Interpret intensional Ns and IVs as p’ties of individual con-
cepts, hhs, ei, hs, tii (in (Montague, 1973), type hhs, ei, ti):

Mary knows that Penny is a philosopher. T

Penny is a philosopher 6 6 6, 13 + 12 3 = 9 3 + 10 3. T

Mary knows that 13 + 12 3 = 9 3 + 10 3. F

/ / / / / /

The temperature at @at @at @ is ninety. T

The temperature rises. T

Ninety rises. ?

/ / / / / / / / /
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A Remaining Problem: Logical omniscience (Hintikka, 1975)

Fact: TY
2

interprets sentences and CPs as sets of indices.

All true sentences across all worlds are logically equivalent.

We may substitute such sentences in all contexts, including
propositional attitude contexts.

But this again warrants counterintuitive inferences:

Mary knows that everything is self-identical. T

Everything is self-identical , 13 + 12 3 = 9 3 + 10 3. T

Mary knows that 13 + 12 3 = 9 3 + 10 3. F

The problem of logical omniscience is observed in (Carnap,
1988; Lewis, 1970; Cresswell, 1973; Barwise and Perry, 1983).



Motivation Challenge �-Logic Types NL Semantics Montague Wrap-Up References

Solution Strategies overview in (Fox and Lappin, 2005)

Master strategy: Introduce ‘more’ semantic values for sentences:

Define a more fine-grained notion of proposition,
which does not identify equivalent expressions.

1. ‘Structured Meanings’ (Carnap, 1988; Lewis, 1970; Cresswell,
1985) also consider the compositional structure of
Montagovian propositions;

2. Partialization (Hintikka, 1975; Rantala, 1982; Muskens, 1995)
extend the s, t-domains to situations (or impossible
worlds) and truth-combinations;

3. Property Theory (Thomason, 1980; Chierchia and Turner,
1988; Pollard, 2008) add a new domain of intensional
objects (e.g. primitive propositions).



Motivation Challenge �-Logic Types NL Semantics Montague Wrap-Up References

Wrap-up

Formal semantics . . .

. . . is an active research area in the intersection of linguistics,
logic (or comp. sci.), and philosophy.

. . . explains and predicts many properties of NL semantics.

. . . obtains the domain of application for formal techniques.

enables the formal treatment of philosophical problems.
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Pointers to the Literature (? := my favorite)

1 Formal methods in NL semantics:

(Partee, ter Meulen, and Wall, 1990): overlaps with today’s
introductions by Gil & Florian, and Catrin & Sebastian

(Gamut, 1991, vol. 1): overlaps with Gil & Florian’s lecture

? (Landman, 1991): more algebraic/lattice-theoretic, with
detailed linguistic applications (1990)

2 Montague semantics (general introductions): (1981)

(Dowty, Wall, and Peters, 1981): the classic textbook

? (Gamut, 1991, vol. 2): the Amsterdam textbook by van
Benthem, Groenendijk, Stokhof, de Jongh, Verkuyl

(Heim and Kratzer, 1998): probably the most popular
introduction to (general) formal semantics
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Pointers to the Literature (? := my favorite)

3 Montague semantics (historical/overview):

? (Partee and Hendriks, 1997): the authoritative introduction
(linguistics-oriented)

(Janssen, 2012): a more philosophically-oriented introduction

4 Alternative frameworks

Situation semantics (Barwise and Perry, 1983; Kratzer, 1989;
Muskens, 1995): replaces possible worlds by partial situations

Dynamic semantics (Groenendijk and Stokhof, 1991; Kamp,
1981; Heim, 1982): models intersentential anaphoric relations

? Data semantics (Veltman, 1981; Landman, 1985; 1984;
Muskens, 2013): models information growth in discourse

Proof-theoretic semantics (Schröder-Heister, 1991; Francez
and Dyckho↵, 2011): focuses on proofs, not (model-th.) truth
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Pointers to the Literature (? := my favorite)

5 Up and coming: Montague-style semantics in modern
type-theories (MTT semantics)

(Ranta, 1994): the earliest monograph on MTT semantics

? (Luo, 2014): accessible lecture notes

6 The lambda calculus

(Barendregt and Barendsen, 2000): a classic

(Hindley and Seldin, 2008): the standard textbook

? (Barker, 2014): an interactive tutorial

7 The typed lambda calculus

? (Muskens, 2011): applied to Montague-style NL semantics
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Thank you!
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