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Random Variables
• Uppercase letters A, B,C, . . . stand for random variables (e.g., the price of a pot

of tea, your height in centimetres).

• Lowercase letters a, b, c, . . . stand for values of random variables (e.g., e2.50 as
the price of a pot of tea; 165cm as your height in centimetres.)

I’ll also use lowercase letters to designate the event of a variable taking on a
particular value (e.g., that a cup of tea costs e2.50, that you are 165cm tall).

• Bold uppercase letters A,B,C, . . . stand for sets of random variables (e.g., {how
a particular coin landed, how a particular die landed}).

• Bold lowercase letters a,b, c . . . stand for sets of values for sets of random vari-
ables (e.g. {the coin landed heads; the die landed six}).

• I’ll use P(A1, A2, . . . An) to stand for a joint probability distribution over values
of {A1, A2, . . . An}.

• I’ll use P(A1, A2 . . . An|B1, B2 . . . Bm) to stand for a set of conditional probability
distributions: one distribution over values of A1, A2 . . . An conditional on B1 =

b1∧B2 = b2∧ . . .∧Bn = bn, for each possible combination of values b1, b2. . . bn.

• The product P(A|C)P(B|C) is a set of joint (conditional) probability distribu-
tions that assigns to each a, b, and c, the probability

P(a,b|c) = P(a|c)P(b|c)

• I will say that A and B are independent conditional on C, that C screens off B
from A, or that (A⊥B|C) iff for every set of values a for A, b for B, and C for c,

P(a|b, c) = P(a|b)

So: what is all this vocabulary going to do for us?
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Encoding Information
Suppose I want to describe the relationship between two random variables: language
aptitude L (let’s say that this takes either a “high” value l1 or a “low” value l0) and
score S on a standardised language test (which also takes either a “high” value s1 or a
“low” value s0) . One way to do it is with a joint probability distribution [Koller and
Friedman, 2009]:

L S P(L, S )
l0 s0 0.665
l0 s1 0.035
l1 s0 0.06
l1 s1 0.24

Another option is to use

a distribution for L: and a pair of conditional distributions for S given L:

l0 l1

0.7 0.3

L s0 s1

l0 0.95 0.05
l1 0.2 0.8

The Example: More Complicated Version
An employer is selecting job candidates partly on the basis of language aptitude L
(which can be high or low). They have three kinds of data: standardised test scores
S (which can be high or low), letters of recommendation R (which can be positive or
lukewarm), and grades G (which can be A, B, or C). Test scores and grades are affected
by language aptitude. Grades also depend on the difficulty D of the language course
the candidates have taken (this can be high or low). Furthermore, it is known that the
letter-writers are all lazy: they don’t remember their students, but just look at the stu-
dents’ grades, and base their letters entirely on the grades.

If we wanted to completely specify a probability distribution over these variables, we
would need a table with 96 entries! Luckily, we can encode the information from this
example using a graph (see slides). Notice:

• Nodes represent random variables.

• Edges represent relations of direct dependence.

• A is a parent of B iff B directly depends on A. Child is the inverse of parent;
ancestor is the ancestral of parent and descendant is the ancestral of child.

Markov Condition Where PAR(A) is the set of A’s parents, then for any B disjoint
from PAR(A) and not containing any descendants of A,

P(A|B,PAR(A)) = P(A|PAR(A))

Chain Rule P(A1, A2 . . . An) = Πn
i=1(P(Ai|PAR(Ai))
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D-Separation
Given a probability distribution and a graph that satisfies the Markov Condition for that
distribution, when are two variables independent?

A sufficient condition: when they are d-separated.

• A path in a graph is a set of arrows such that the first has a node in common with
the second, the second has a node in common the third. . . , and so on. (In this
definition, it doesn’t matter which way the arrows are pointing.)

• Suppose we have a path from X, through Z, to Y . There are only four ways this
path can possibly be.

1. X → Z → Y
(X is an indirect cause of Y , via Z)

2. Y → Z → X
(Y is an indirect cause of X, via Z)

3. X ← Z → Y
(Z is a common cause of X and Y)

4. X → Z ← Y
(Z is a common effect of X and Y—this kind of connection is often called
a collider.)

• A node on a path is active iff either it belongs to type 1-3 and its value is un-
known, or it belongs to type 4 and its value or the value of one of its descen-
dants is known. (You can think of active nodes as allowing information to pass
through.)

• A path from X to Y is active iff all its nodes are active.

• Two (disjoint) sets of variables X and Y are d-separated iff there is no active
path from any variable in X to a variable in Y.

• When the Markov Condition holds, any two d-separated sets of variables are
guaranteed to independent. There are cases of independence without d-separation,
but for every graph, there is some probability distribution that is Markovian rel-
ative to the graph, such that only the d-separated variables are independent.

From Correlation to Causation
• So far, I’ve given a statistical interpretation of these graphs. (I was a little sloppy

with the word “cause” in the section on d-separation.) But the arrows can be
given a causal interpretation. We should think that direct causal dependencies
will be reflected by statistical dependencies, in the way expressed by the Markov
Condition. (This rule is often called the Causal Markov Condition.)
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• We can replace the probabilistic connections in a Bayesian network with deter-
ministic causal connections, plus unknown “latent” variables that generate noise
(though we don’t have to).

• Instead of marginal probability distributions, we can introduce deterministic struc-
tural equations.

A = f (PAR(A)) says that A’s value is determined by of the values of A’s parents
according to function f .

Note: this structural equation is asymmetric. A = B says that A’s value is coun-
terfactually determined by B’s value; B = A says that B’s value is counterfactu-
ally determined by A’s value.

• There’s a key difference between observing an event, and intervening to make an
event happen.

– Suppose that, on my evidence, if I learn that a child goes to a private school,
I should become more confident that the child will get a good grade on
their university entrance exam. Is sending my child to a private school an
effective way to improve the child’s grade?

– Simpson’s paradox case [Koller and Friedman, 2009]: Suppose that taking
drug D is correlated with recovering from nasty medical condition M, but
anti-correlated with recovery among men and among women. Should a
conscientious doctor prescribe drug D to her patients?

cured sick
men drug 21 (70%) 9 (30%)

no drug 8 (80%) 2 (20 %)
women drug 2 (20%) 8 (80%)

no drug 12 (40%) 18 (60%)
total drug 23 (57.5%) 17 (42.5%)

no drug 20 (50%) 20 (50%)

• Your probability for x conditional on observing y should be the traditional

P(x|y) =
P(x|y)
P(y)

But your probability for x conditional on causing y should be

P(x|do(y)) = Px(y)

where Px is the probability distribution in a submodel generated by replacing the
structural equation for X with a new equation that sets X = x (or by replacing
the conditional probability distribution for X on its parents with a probability
distribution that assigns 1 to X = x).
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Actual Cause
We often want to know when one event C = c caused another E = e in a particular
instance. Did the defendant’s negligence cause the plaintiff’s death? Did the fish I ate
for dinner make me sick? Did Grandpa’s smoking cause Grandpa’s lung cancer? It
would be nice to give an answer in terms of counterfactual dependencies (e.g., it seems
relevant to determine whether Grandpa would’ve still had cancer if he hadn’t smoked).
Here’s a popular theory that predates causal models:

Transitive Closure of Counterfactual Dependence C0 = c0 is a cause of E = e iff

C = c and E = e, and either

E = e counterfactually depends on C0 = c0,

or there is a chain of events C1 = c1, C2 = c2. . .Cn = cn such that E = e
counterfactually depends on Cn = cn and for each Ci, Ci = ci counterfactu-
ally depends on Ci−1 = ci−1.

[Lewis, 2000]

But there are counterexamples!

Pre-Emption Suzy is teaching Billy to smash windows, starting with the window of
their next-door neighbour. Billy aims a rock at the window. Suzy stands by with
a baseball bat to swing at the window, in the event that Billy fails to break it. But
Billy hits the window and shatters it.

Intransitive Causation Hiking in a mountain pass, I see a boulder hurtling toward
me, and duck to avoid it. By ducking, I manage to survive—if I hadn’t ducked, I
would be dead. But the boulder falling did not cause me to survive [Hitchcock,
2001]

First Pass C = c causes E = e iff

C = c and E = e

and there is at least one route from C to E for which an intervention on C will
change the value of E, given that other parents of C that are not on this route
have been fixed at their actual values.

Unfortunately, there are still counterexamples.

Overdetermination The cafeteria at LMU is good about taking feedback. If at least
one person threatens to sue them over their horrible eel pie, they will stop serving
it. Catrin and I both threaten to sue. The cafeteria duly withdraws the eel pie.
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Definition of Actual Cause Suppose we have variables C and E, a path φ from C to
E, and some variables V1 . . .Vn not on φ. The values v1 . . . vn are in the redundancy
range for V1 . . .Vn if,

given the actual value of C,

there is no intervention that in setting the values of V1 . . .Vn to v1 . . . vn, will
change the (actual) value of E.

Then C = c causes E = e iff

C = c and E = e

and for at least one directed path φ from C to E, and way of fixing by interven-
tions all parents of E that do not lie along φ at some combination of values within
their redundancy range, there is an intervention on C that will cause a change in
the value of E [Woodward, 2003].
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