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A Bayesian Network

Language
Aptitude

a0 a1

0.7 0.3

Grade

g1 g2 g3

a0, d0 0.3 0.4 0.3
a0, d1 0.05 0.25 0.7
a1, d0 0.9 0.08 0.02
a1, d1 0.5 0.3 0.2

Difficulty

d0 d1

0.6 0.4

Test Score

s0 s1

a0 0.95 0.05
a1 0.2 0.8

Letter

l0 l1

g1, d0 0.1 0.9
g2, d1 0.04 0.6
g3, d0 0.99 0.01
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A Deterministic Example

It always rains when my barometer is low. Yesterday, my
barometer was low and it rained. Why couldn’t I have stopped the
rain by breaking my barometer?

Pressure
1

Barometer
1

Rain
1

Barometer = Pressure
Rain = Pressure
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Simpson’s Paradox

Gender

gf gm

0.5 0.5

Drug

c1 d1

gf 0.25 0.75
gm 0.75 0.25

Cure

c0 c1

gf , d0 0.6 0.4
gf , d1 0.8 0.2
gm, d0 0.2 0.8
gm, d1 0.3 0.7

c0 c1

do(d0)
do(d1)
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Simpson’s Paradox

Gender

gf gm

0.5 0.5

Drug

c1 d1

gf 0 1
gm 0 1

Cure

c0 c1

gf , d0 0.6 0.4
gf , d1 0.8 0.2
gm, d0 0.2 0.8
gm, d1 0.3 0.7

c0 c1

do(d0)
do(d1)
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Gender

gf gm

0.5 0.5

Drug
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gm 0 1

Cure
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Simpson’s Paradox

Gender

gf gm

0.5 0.5

Drug

c1 d1

gf 1 0
gm 1 0

Cure

c0 c1

gf , d0 0.6 0.4
gf , d1 0.8 0.2
gm, d0 0.2 0.8
gm, d1 0.3 0.7

c0 c1

do(d0) 0.4 0.6
do(d1)
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Simpson’s Paradox

Gender

gf gm

0.5 0.5

Drug

c1 d1

gf 1 0
gm 1 0

Cure

c0 c1

gf , d0 0.6 0.4
gf , d1 0.8 0.2
gm, d0 0.2 0.8
gm, d1 0.3 0.7

c0 c1

do(d0) 0.4 0.6
do(d1) 0.55 0.45
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Pre-Emption

Window
Breaks

1
Window
Breaks
Window
Breaks

Rock
Connects

1

Billy
Throws

1

Suzy
Swings

0

Connect = Throw
Swing = ¬Connect
Break = Throw ∨ Swing
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Boulder 1

Duck 1

Death 0

Duck = Boulder
Death = Boulder ∧ ¬ Duck
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Eel Pie
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1
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1

Recall = Rachael ∨ Catrin
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