Decision Theory, Problem Set #2

Rachael Briggs

July 29, 2014

1. **Preference** Suppose that weak preference (\geq) satisfies the following two constraints.

Transitivity For all *a* and *b*, if $a \ge b$, and $b \ge c$, then $a \ge c$.

Completeness For all *a* and *b* in the domain of \geq , either $f \geq g$ or $g \geq f$.

Suppose, furthermore, that indifference and strong preference are defined in terms of weak preference as follows.

a > b iff $a \gtrsim b$ and $b \not\gtrsim a$ $a \sim b$ iff $a \gtrsim b$ and $b \gtrsim a$

Show that indifference and strong preference have the following properties (for all *a* and *b* in the domain of > and \sim).

- (a) If a > b and b > c, then a > c
- (b) If a > b and $b \sim c$, then a > c
- (c) If $a \sim b$ and b > c, then a > c
- (d) If $a \sim b$ and $b \sim c$, then $a \sim c$
- (e) Exactly one of the following holds: a > b or b > a or $a \sim b$
- 2. Positive Linear Transformations Where U is an expected utility function that represents a preference ordering \gtrsim , and U^* is an expected utility function, show that
 - (a) If there exist some real y and positive real x such that, for every a in the domain of \geq ,

$$U^*(a) = xU^*(a) + y$$

then U^* represents \geq .

(b) If there exist no real y and positive real x such that, for every a in the domain of \geq ,

$$U^*(a) = xU^*(a) + y$$

then U^* does not represent \geq .

3. **Necessary Axioms** Savage showed that every preference relation that satisfies his axioms (which includes the Sure-Thing Principle) can be represented by a probability function and a utility function.

An axiom is *necessary* (in the context of representation theorems for expected utility theory) if it is satisfied by every set of preferences that can be represented by an expected utility function. Is the Sure-Thing Principle necessary? Why or why not?